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Abstract

In this paper we perform density prediction for the equity returns in a non-linear manner

by employing a copula-based approach. The use of asymmetric copulas enables us to model

asymmetric predictive densities and non-linear dependencies between equity returns and

some predictor variable. We consider static, hierarchical and dynamic dependence structures,

together with lagged returns or dividend yield as predictor variables. In our proposed approach,

the copula parameter and the marginals are estimated simultaneously by using Sequential

Monte Carlo techniques. We apply proposed models to daily log returns of 20 assets traded

at the NYSE. We show that in terms of predictive log Bayes Factors the realized volatility

based models are preferred on average to the stochastic volatility based models. Moreover,

asymmetric copula is preferred by more assets than the symmetric copula, advocating the use

of non-linear models. Also, dividend yield is a better predictor variable than the lagged returns

overall, but this result is reversed if we consider a volatile period only. Finally, hierarchical

dependence parameter structure is preferred to dynamic or static approaches.
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1 Introduction

This paper re-examines the issue of equity return predictability in a novel non-linear context.

Even though the efficient market hypothesis states that equity returns are unpredictable, multiple

empirical studies have demonstrated that some returns are, in fact, predictable, see Lettau and

Ludvigson (2001), for example. Nonetheless, the task is not trivial and requires careful consideration.

Producing accurate predictive distributions of the returns has major implications for investors when

making portfolio decisions or measuring tail risk, such as Value-at-Risk, for example. The vast

majority of the literature consider regression-type models for the equity returns, imposing a linear

dependence structure between the returns and the explanatory variable(s). There is plenty empirical

evidence that equity return response to some predictor variable does not necessary have to be linear,

see Nam (2003), Kahra et al. (2018), for example. One way to incorporate such non-linearities is

via structural breaks, regime-switches, etc., but then the number of model parameters increases

dramatically and the model quickly loses its parsimonious representation.

Apart from non-linear dependence structure, accounting for estimation uncertainty and volatility

timing is essential for improving return forecasts, as shown by Johannes et al. (2014). In their

widely cited paper the authors compare a number of alternative models for equity returns and

show that significant gains in return prediction are obtained only when the investor is Bayesian

and time-varying volatility is included in the model. Therefore, in this paper we extend the work

of Johannes et al. (2014) and propose to model the excess equity returns using copula functions,

offering a parsimonious model that allows for non-linear dependencies between the return and some

predictor variable. We also consider an alternative time-varying volatility measure extracted from

the intra-day equity price data. By using historical data of 20 assets we show that an ensemble of

these extra features improves equity return distribution forecasts, that consequently can be used by

investor in constructing portfolios or calculating tail risk.

From the technical viewpoint, in this work we build on models described in Chen and Fan
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(2006) and Bouyé et al. (2002) and apply the proposed method to return prediction problem. The

motivating example is a work of Johannes et al. (2014), where the authors consider a number of

competing models and estimation approaches (Bayesian versus frequentist), however, all the models

considered in their work are inherently linear. Therefore, in this work we extend the models of

Johannes et al. (2014) in three directions. First, apart from the stochastic volatility models, we also

study realized volatility models and their role in return prediction. Also, next to the dividend yield

as a predictor variable we also use lagged returns. Finally, we consider not only regression-type

linear dependence structures, but we also propose a copula-based model that allows for asymmetric

dependencies. We allow these dependence structures to be static, dynamic and hierarchical.

Copulas have been applied in many fields in both social and natural sciences, especially in

the context of financial time series, see Patton (2009), for example, for an extensive review.

Even though the majority of the copula-related literature focuses on modeling contemporaneous

dependence between multiple time series, copulas also permit to model the temporal dependence

of a univariate time series, as noted in Chen and Fan (2006), among others. The use of copulas

in modeling temporal dependence of univariate time series relates to Markov processes and have

been described in Darsow et al. (1992), Joe (2015), for example. By considering various possible

marginal distributions with different copula specifications one can capture often observed features

of univariate financial time series, such as skewness and fat tails. Moreover, depending on the

copula family, it is possible to model non-linear temporal dependencies, as opposed to the standard

linear regression-type models. Chen and Fan (2006) study univariate semiparametric stationary

Markov models, defined via a parametric copula and nonparametric marginal distributions. The

authors are interested in estimating and forecasting transition distributions of a univariate time

series, that are completely characterized by the marginal distribution and the copula dependence

parameter. By having a full transition distribution it is straightforward to extract any conditional

moment and/or conditional quantiles, analytically or via Monte Carlo approximation. Ibragimov

(2009), Beare (2010), Ibragimov and Lentzas (2017) also explore the relationship between Markov
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processes and a copula function for univariate time series. In terms of applications, Abegaz and

Naik-Nimbalkar (2008) propose a dynamic copula model for a first order Markov time-series with

an ARMA-like specification and apply their model to simulated and real data. Sokolinskiy and van

Dijk (2011) forecast realized volatility through a semi-parametric copula realized volatility model,

but disregard the forecasting power of a deterministic time-varying copula parameter.

Important to note that in this work we do not pursue multivariate time series analysis, since it is

out of the scope of the paper. However, the proposed framework could be extended to multivariate

case by assuming some structure for joint modeling of the univariate processes, discussed in this

paper. Neither we consider portfolio allocation exercise, especially given that Johannes et al. (2014)

already showed how a superior univariate density prediction for each asset separately translates

into superior out-of-sample portfolio performance. Finally, same as in Johannes et al. (2014),

our investor is fully Bayesian and model estimation is carried out in a simultaneous manner via

Sequential Monte Carlo techniques, allowing for fast inference and consistent model comparison via

Bayes Factors.

The paper is organized as follows. Section 2 introduces the proposed copula-based model and

describes the estimation procedure. Section 3 summarizes the set-up of our empirical study and

presents empirical findings. Section 4 concludes and gives an outlook on further generalizations.

2 Methodology

The construction of flexible multivariate distributions using copulas has started with the seminal

work of Sklar (1959). It allows to combine a copula function with marginal distributions, which

not necessary have to be the same and can be specified separately. Since then, copulas have been

widely used in modeling temporal dependence between financial time series, because they can

capture non-linear dependence, as opposed to the correlation coefficient. For a formal introduction

and details on copulas the reader is referred to the books of Nelsen (2006) and Joe (2015), among

4



others.

Nelsen (2006) defines copulas in the following manner. Consider a collection of random variables

Y1, . . . , Yd with corresponding distribution functions Fi(yi) = P [Yi ≤ yi] for i = 1 . . . , d and a joint

distribution function H(y1, . . . , yd) = P [Y1 ≤ y1, . . . , Yd ≤ yd]. Then, according to a theorem by

Sklar (1959), there exists a copula C such that

H(y1, . . . , yd) = C(F1(y1), . . . , Fd(yd)). (1)

In other words, it is possible to model univariate marginals and the dependence structure separately.

Copulas are defined in the unit hypercube [0, 1]d, where d is the dimension of the data, and all

univariate marginals are uniformly distributed u1, . . . , ud
iid∼ U(0, 1), where Fi(yi) = ui∀i = 1, . . . , d.

Copulas are very flexible in the sense that (i) the marginal distributions F (·) can be modeled

independently from the dependence structure C(·) and (ii) copulas are able to capture asymmetric

dependencies, as opposed to the standard multivariate distributions, such as Gaussian or Student’s

t. There is a vast selection of flexible bivariate one-parameter copulas, see Joe (2015) and Nelsen

(2006) for example.

2.1 Copulas and Markov process for lagged returns as predictor vari-

able

As described in Chen and Fan (2006), let {Yt} be a stationary first order Markov process whereas

its probabilistic behavior is completely defined by joint distribution function H(·) between Yt−1

and Yt. On the other hand, as seen before, using Sklar’s theorem, this joint can be expressed using

a copula representation H(yt, yt−1) = C(F (yt), F (yt−1); θ), where F (·) is a marginal cumulative

distribution function (CDF) of Yt and θ is a copula parameter. This allows to model a stationary

Markov process using copula, where the transition kernel, determined by θ, is constant over time.

Let h(·) be the joint density of Yt and Yt−1, and f(·) the corresponding marginal probability
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density function (PDF) of Yt. Using copula representation in (1), h(·) can be expressed as a product

of the marginals and a copula density, which defines the dependence structure:

h(yt, yt−1) = c(F (yt), F (yt−1); θ) · f(yt) · f(yt−1), (2)

then, the conditional distribution of yt given yt−1 is

f(yt|yt−1) =
h(yt, yt−1)

f(yt−1)
= c(F (yt), F (yt−1); θ) · f(yt). (3)

Parameter θ completely determines the dependence structure which is constant across time. Then

the collection of {Yt} follows a stationary first order Markov process with constant transition kernels.

A natural extension is to relax the assumption of time-invariant dependence and consider dynamic

copula approach by allowing θ to be time-varying, i.e. θt. This implies that {Yt} is inhomogeneous

first order Markov process with time-varying transition kernel. In this paper we consider static,

hierarchical and dynamic models for the dependence coefficient θt.

2.2 Copulas for dividend yield as predictor variable

Similarly to the case outlined above, for the predictor variable instead of lagged returns one can

consider dividend yield, i.e. yt−1 is replaced by DYt−1 - the previous period’s dividend yield. As seen

in Lettau and Ludvigson (2001), Boudoukh et al. (2007), Johannes et al. (2014), dividend yield (or

net payoff) is a reasonable predictor variable for the log returns. In this case the CDF of dividend

yield FDY (DYt−1) has to be estimated separately. In this work we consider a non-parametric

estimator of the distribution function of the dividend yield. The observed dividend yield data is

transformed to the unit interval via empirical distribution function, adjusted by the T/(T + 1)

factor, in order to avoid the unit at the end of the interval, as seen in Genest et al. (1995). Here T
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is the length of the sample size.

uDYt = T−1

T∑
j=1

1{DYt ≤ DYj}
T

T + 1
= (T + 1)−1

T∑
j=1

1{DYt ≤ DYj},

where 1{·} is an indicator function. Then, uDYt
iid∼ U(0, 1) for t = 1, . . . , T . Notice that there is no

need to assume any dynamics for the dividend yield process, because at time t the dividend yield

from t− 1 is observed. Next, we describe the assumed parametric model for the log returns.

2.3 Marginals for the returns

Define rt as the demeaned log-returns (in %) of some financial asset:

rt = 100×
(

log
Pt
Pt−1

− E

[
log

Pt
Pt−1

])
, (4)

where Pt−1 and Pt are the prices at the beginning and at the end of the period, respectively. Also,

define RVt =
∑N

j=1 r̃
2
j,t as a realized ex post volatility measure, where r̃j,t is a 10-minute intraday

log-return for day t and N is the number of 10-minute intervals in a trading day, i.e. it holds

that rt =
∑N

j=1 r̃j,t. In the empirical application section we have also tried 2, 5 and 15-minute

returns for the RVt measure and from the signature plot we concluded that 10-minute intervals

are big enough not to be affected by the market micro-structure noise and small enough to obtain

efficient estimates. For introduction and review of realized volatility refer to Barndorff-Nielsen and

Shephard (2002), Andersen et al. (2003), Barndorff-Nielsen and Shephard (2004), McAleer and

Medeiros (2008), among others.

Then, the demeaned returns can be standardized via realized volatility measure and the resulting

standardized returns are approximately Normally distributed, see Andersen et al. (2000), Andersen
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et al. (2001) (e.g. see Figure 1):

zt = rt/
√
RVt, such that zt

approx∼ N (0, 1). (5)

Consequently, Φ(zt) ≡ urt
iid∼ U(0, 1). That is, the probability integral transforms of the returns,

urt , are uniformly distributed. Since we are interested not only in the model fit, but prediction as

well, we need to specify a dynamic model for the RVt. log(RVt) can be modeled in many manners,

such as simple AR(1) or a more sophisticated Heterogeneous Autoregressive model (HAR) of Corsi

(2009) or HARQ of Bollerslev et al. (2016) specifications. We have tried fitting AR(1) and HAR

models for several data sets and evaluating their predictive performance at t+ n via Bayes Factors.

HAR model performs better for t+ n horizon, however, at t+ 1 we did not find any substantial

improvement as compared with a simple AR(1) specification, since we re-estimated the model after

each new data point. Therefore, the model used for the marginals of the returns is the following:

rt = εrt
√
σ2
t , (6)

log(σ2
t ) = µ(l) + φ(l) log(σ2

t−1) + τ (l)ε
(l)
t , (7)

where σ2
t ≡ RVt, l = RV , εrt and εRVt are independent

iid∼ N (0, 1). For the sake of comparison with

benchmark models, we also consider a Stochastic Volatility (SV) process for the variance of the

returns, first introduced by Taylor (1982). In this case, σ2 is replaced with SVt and l = SV in

(6)-(7). SV-based models were considered in Johannes et al. (2014). Call ΘV = (µ(l), φ(l), τ (l)) a

set of volatility-related parameters, where l = {SV,RV }. Finally, if the marginal distributions are

specified correctly, the probability integral transform should provide uniformly distributed variables,

see Diebold et al. (1998).
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and next we implement our time-varying RW copula model on the ẑt, which are approx-

imately Normally distributed:
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Figure 1: Demeaned returns of IBM, standardized by a RV mueasure.

2.4 Copula

In this paper we consider some of the most popular one-parameter copulas (only bivariate cases),

such as Gaussian and Clayton (referred as Mardia-Takahasi-Clayton-Cook-Johnson copula in Joe,

2015). In the very first draft of the manuscript we have also considered a Gumbel copula. Gumber

copula allows for strong upper tail dependence. Gumbel copula always performed the worst,

therefore, we have decided to drop it in order to reduce the number of possible models. Since in

this work we consider Markov process of order one, bivariate copulas with a single parameter are

sufficiently flexible. On the other hand, if we wish to consider a higher-order dependence structure,

one-parameter copulas might be too restrictive, because it would imply the same strength of

dependence between all lags of returns. Gaussian copula is symmetric and does not present any tail

dependence, meanwhile Clayton copula can model lower tail dependence. Economic interpretation

of strong upper tail dependence is the following: when the markets are in turmoil, the dependence

between log returns and some predictor variable becomes stronger as compared to the calm periods.

The instability (non-constant regression coefficient) in return models that are based on dividend

yield has been widely documented in the financial literature, see Goyal and Welch (2003), Paye and

Timmermann (2006), Ang and Bekaert (2007), among others.
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An important notion associated with copulas is Kendall’s τκ, a measure of dependence, which is

given by τκ = 4
∫ ∫

I2
C(u, v)dC(u, v)− 1, see Nelsen (2006). See Table 1 for the CDFs, PDFs and

Kendall’s τs for Gaussian and Clayton copulas, and for detailed properties of these copulas refer to

Joe (2015).

The copula parameter θ for different copula families lies in different domains. Therefore, in

order to be able to compare the dependence across different copulas, we rely on Kendall’s τκ, where

the is a one-to-one relationship between θ and τκ. But first we need to make sure it lies in the

same domain for all copulas of interest. Note, that for Gaussian copula τκ ∈ [−1, 1], however, for

standard Clayton copula τκ > 0. Therefore, instead of considering standard Clayton copula (cC),

we couple this copula with its rotation and obtain the rotated Clayton copula (cRC), that is defined

as follows:

cRC(u, v; θ) =

 cC(u, v; θ) if θ ≥ 0,

cC(1− u, v;−θ) if θ < 0.
(8)

In order to be able to model the dynamics of τκ in an unconstrained manner, it is common

to perform some deterministic transformations on this parameter and then model the behavior

of this transformation x. In order to recover the copula parameter θ from the auxiliary latent

variable x, we first convert x to Kendall’s τκ thought the inverse of Fisher’s z-transformation

τκ = exp{2x − 1}/ exp{2x + 1} and then the resulting τκ is converted to a copula parameter θ

through one-to-one copula-specific function (see Table 1). We consider two specifications for the

copula parameter: hierarchical and dynamic.

Hierarchical copula. For the hierarchical parameter case, θ, (its auxiliary process x) is fixed in

time with a prior distribution N (mx, Vx). In order to be completely uninformative we construct

a hierarchical structure for x by putting a Normal-Inverse Gamma NIG hyperprior on mx and
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Vx. In this manner θ (or x) is treated as a latent variable that needs to be filtered out during the

estimation procedure. Given the filtered x, the corresponding parameters mx and Vx can then be

estimated.

Dynamic copula. In dynamic case, the copula parameter θt (or its auxiliary process xt) follows a

random walk process: xt = xt−1 + Vxηt, ηt
iid∼ N (0, 1). The unknown parameter Vx has an Inverse

Gamma IG prior. In general, call ΘC the set of parameters, associated with the evolution of xt.

ΘC in hierarchical model contains parameters mx and Vx, meanwhile in the dynamic case contains

only the variance parameter Vx. Then, Ω = (ΘV ,ΘC) is a complete set of model parameters.

2.5 Conditional densities

The complete model for the univariate log returns rt, written in a state-space representation, looks

as follows:

ut = Φ(rt/σt),

(ut, u
(j)
t−1)|xt ∼ C

(
(ut, u

(j)
t−1); θt

)
, where θt = fτ (xt), (9)

xt|ΘC , xt−1 ∼ N (xt;mx, Vx).

Here σ2
t follows either RV or SV dynamics as in (6)-(7), xt is either hierarchical with fixed mx or

follows a random walk process with mx = xt−1, j ∈ {DY, r} and fτ (·) is a deterministic function

that transforms the latent variable x to the copula parameter θ via Kendall’s τ transformation.

Note that this model is specified for univariate log return series only, where the dependence between

today’s log return and some predictor variable, instead of relying on linear regression, is modeled

via copula.

In many financial applications the estimation of parameters is not the ultimate goal. One is

usually interested in estimating and forecasting conditional distributions and certain moments,
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such as the mean or variance for example. The predictive marginal density for one-step-ahead

returns, given the all the information up till time t: F1:t = (r1, . . . , rt, DY1, . . . , DYt, RV1, . . . , RVt),

where j ∈ {DY, r}, is:

f(rt+1|F1:t) =

∫ ∫
c

(
Φ

(
rt+1√
σ2
t+1

)
, u

(j)
t

∣∣∣∣∣xt+1, σ
2
t+1

)
f(rt+1|σ2

t+1)f(xt+1|F1:t)f(σ2
t+1|F1:t)dxt+1dσ

2
t+1.

(10)

Moreover, the conditional kth moment can be calculated as

E[rkt+1|u
(j)
t ] =

∫
rkt+1f(rt+1|u(j)t )drt+1.

2.6 Estimation

The usual Bayesian estimation approach relies on MCMC schemes. Auśın and Lopes (2010), for

example, use a multivariate random walk Metropolis - Hastings in a one-step estimation procedure

for the parameters of the marginals and the copula, where their time-varying copula parameter is

observation driven. Meanwhile, Almeida and Czado (2012) employ a two-step estimation approach

where the marginal series are estimated first. Then, conditioning on the estimated marginal

parameters, use a similar method as Auśın and Lopes (2010) to model copula dynamics, and a

coarse grid method for updating the unobserved states of the stochastic copula. Creal and Tsay

(2015) also employ a MCMC estimation scheme for modeling large panels of financial assets using

high dimensional dynamic stochastic copula models. MCMC methods are inherently non-sequential

and once a new data point is observed the algorithm has to be re-run all over again. Johannes

et al. (2014), on the other hand, consider a sequential estimation approach for their proposed

return prediction models. Therefore, in the spirit of their paper, we also employ an algorithm that

performs sequential simultaneous estimation for the proposed model, where the marginals and

the copula parameters are estimated simultaneously. In particular, we use a modified version of
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Particle Learning of Carvalho et al. (2010a), that relies on the use of the sufficient statistics of

Storvik (2002) to allow for parameter learning. The use of sufficient statistics has been shown to

increase the efficiency of the algorithm by reducing the variance of sampling weights, see Carvalho

et al. (2010a). For a detailed description of the algorithm see the Appendix A.1.

The priors for model parameters are chosen to be conditionally conjugate. For the set of copula

parameters ΘC :

Vx ∼ IG(b0/2, b0Vx0/2),

mx|Vx ∼ N (mm, VmVx).

And for the set of volatility parameters ΘV :

τ 2(l) ∼ IG(b
(l)
0 /2, b0τ

2(l)
0 /2),

φ(l)|τ 2(l) ∼ T N (−1,1)(m
(l)
φ , V

(l)
φ τ 2(i)),

µ(l) ∼ N (m(l)
µ , V

(l)
µ ).

where l = {SV,RV } and T N (a,b) stands for a truncated Normal distribution with truncation

points at a and b. This restriction on the persistence parameter guarantees stationary process for

the dependence parameter, however, it is not necessary (one could actually test if the process is

stationary by removing the restriction). Initial states are x0 ∼ N (cx0 , C
x
0 ) and h0 ∼ N (ch0 , C

h
0 ) (only

for SV model). Here cx0 , Cx
0 , ch0 , Ch

0 , b0, b0Vx0, mm, Vm, b
(l)
0 , b0τ

2(l)
0 , mφ, Vφ, mµ, Vµ are the known

hyper-parameters. The initial states at t0 for all parameters and latent variables are simulated

from their corresponding priors. Then, the SMC algorithm transports the set of N particles from

time t− 1 to time t, where at each step these particles are updated using the new information at

time t. A set of particles is an approximate sample from the posterior distribution.

A well-known limitation of Particle filters is called particle degeneracy: an ever-decreasing set
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of unique atoms in the particle approximation of the density of interest. It has been shown in

numerous studies that increasing the number of observations will lead to degenerating paths, unless

the number of particles is being increased simultaneously. Therefore, particle degeneracy has to be

monitored carefully and this shortcoming can be seen as a trade-off between the sequential nature

of the algorithm and stability of MCMC for very large samples. For a general introduction to

particle filters, comparison with MCMC, numerous empirical illustrations and discussion of the

shortcomings of such estimation approach refer to Carvalho et al. (2010a), Carvalho et al. (2010b),

Chopin et al. (2011), Lopes and Tsay (2011), Virbickaite et al. (2019), among many others.

Finally, if the interest is not on-line type inference, MCMC is still a gold standard. Recently

other approaches, such as Particle MCMC or SMC2 (that considers one SMC filter embedded

into another - hence the name), have been emerging, presenting an alternative to the proposed

estimation scheme, see Andrieu et al. (2010), Pitt et al. (2012), Chopin et al. (2013), Fulop and Li

(2013), among others.

2.7 Evaluation

The model comparison is carried out via sequential predictive log Bayes Factors (BF). As pointed

out in Koop (2003), Bayes Factors permit consistent model comparison even for non-nested models.

Also, it contains rewards for model fit, accounts for coherency between the prior and the information

arising from the data, as well as rewards parsimony. Bayes Factor between two competing models

Mk, k ∈ {1, 2}, as seen in Kass and Raftery (1995), is defined as

BF12 =
p(D|M1)

p(D|M2)
,
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where p(D|Mk) is the marginal likelihood for data D given a model Mk. Then the log predictive

Bayes Factor at time t is defined as

logBF12,t =
t∑

s=1

log p(rs|M1)−
t∑

s=1

log p(rs|M2),

and the marginal predictive p(rt|Mk) for model k is obtained as in (10). The integral in (10) is

rarely analytically tractable and can be approximated using costly MCMC-based procedures. On

the other hand, sequential Monte Carlo approach produces marginal likelihoods as by-products of

the estimation procedure, therefore, sequential model comparison via log predictive Bayes Factors

can be carried out without any additional computational cost.

Alternatively, we also employ a log predictive score (LPS) measure, which is defined as follows:

LPS
(i)
T = T−1

T∑
t=1

log p(rt|Mk,Ωk),

which can be seen an average log predictive Bayes Factor at the end of the sample period. Notice,

that Ωk is estimated using the data available up till time t − 1, therefore, LPS is a predictive,

not an in-sample score. One could also consider other comparison metrics, such as value-at-risk

measure for example. However, (marginal) predictive likelihoods are more informative in the sense

that they focus on the entire distribution of the returns, not only on the tails.

3 Empirical Analysis

3.1 Data and Set-up

We investigate the forecast performance of the proposed copula model for 20 daily log returns of

US stocks traded at the NYSE, that are coded as (the full names are available in Table 2):
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”AIG” ”BA” ”BAC” ”C” ”F” ”GE” ”GS” ”HD” ”HPQ” ”IBM”

”JNJ” ”JPM” ”KO” ”MO” ”NKE” ”PFE” ”PG” ”VZ” ”WMT” ”XOM”

We consider daily observations from 01/01/2001 - 31/12/2015 and at each point in time perform

one-step-ahead marginal density prediction. We also consider two sub-periods in order to get a

better understanding how the models perform during calm (Jan 2002- Dec 2006) and nervous (Jan

2007 - Dec 2012) periods. The competing models are all possible combinations of the following,

resulting into 16 models:

1. Realized volatility (RV) or stochastic volatility (SV) based models.

2. Normal Copula (NC) or Clayton Copula (CC) models.

3. Lagged returns (r) or dividend yield (DY) as a predictor variable.

4. Hierarchical (h) and dynamic (d) dependence structures.

Note that Normal copula based model allows for linear (regression-type) dependence structure.

Finally, for comparison purposes we include four static linear models oftenly used as benchmarks,

similar to the ones seen in Johannes et al. (2014):

rt = θrt−1 + εrtσ
(l)
t (11)

rt = θDYt−1 + εrtσ
(l)
t (12)

The four models are all static (s) in θ, RV or SV based such that l = {SV,RV }, using either returns

(11) or dividend yield (12) as a predictor variable. These static models are also estimated using

the SMC scheme. The dependence parameter θ between the returns and the predictor variable

is assumed to have a normal prior distribution with some known hyper-parameter values. Our

proposed hierarchical structure is more flexible in the sense that the hyper-parameters have their

own priors and are estimated, also, θ is a latent variable that is filtered out. We show in the real

data application that for all assets the proposed hierarchical structure dominates the static and
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dynamic models. For a complete list of models refer to Table 3. The hyper-parameter values are as

follows: cx0 = 0, Cx
0 = 0.1, ch0 = RV1, C

h
0 = 0.36, b0 = 6, b0Vx0 = 0.004, mm = 0, Vm = 0.1, b

(l)
0 = 3,

b0τ
2(l)
0 = 0.36, mφ = 0.85, Vφ = 1, mµ = 0, Vµ = 0.01. The values were chosen either to represent

uninformative priors, or to match the unconditional sample moments (for example, the variance

of RV ), or by employing previous knowledge from numerous empirical studies (for example, it is

known that persistence parameter in RV or SV models is close to 1). The number of particles is

set to be very large, N = 500k, in order to ensure that there are no particle degeneracy problems.

Model monitoring can be performed via sequential log predictive Bayes Factors.

3.2 Results

Since there are 20 models and 20 assets, there are 20× 20 estimation results (only for LPS) to be

reported. The corresponding tables can be found in the Appendix A.2. These tables include the

complete model list and report the LPS for all 20 models and 20 assets. Tables 3, 4 and 5 report

the LPS for all models and all assets for the entire sample and two subsamples: calm (Jan 2002-

Dec 2006) and volatile (Jan 2007 - Dec 2012) periods. The numbers in bold indicate the highest

LPS for each asset. For now we will not discuss the magnitude of these differences (this is done in

the later paragraphs), but rather see how many times one or another model is preferred.

Firstly, return based models and dividend yield based models appear as best models for equal

number of assets (10÷10, such that r ÷ DY ) during the entire period. An interesting finding

though is that for the calm period, see Table 4, dividend yield based models are the best for 16 out

of 20 assets (4÷ 16). However, for the crisis period, see Table 5, this ratio almost reverses: now

return based models are better for a bigger number of assets as compared to the dividend yield

based models (13 ÷ 7). This has some important implications: even though for the entire sample

dividend yield is a better predictor variable for the majority of the assets, this result might not

hold depending if we are considering calm or crisis period. For calm period dividend yield seems to

provide better predictive power, meanwhile during crisis periods lagged return is a better predictor
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variable for the majority of the assets.

As for the dependence structure, hierarchical model (h), as compared to dynamic (d) or static

(s) models, is always preferred: in full sample and both subsamples. In the full sample and during

the crisis period, hierarchical models are the best for 18 and 17 assets (out of 20), respectively.

Only for the calm period hierarchical model is the best for 10 assets, meanwhile dynamic and static

models share the rest, 3 and 7 assets respectively. This result implies that for calm period it is

reasonable to consider less flexible dependence structures, however, for the crisis period a more

flexible hierarchical dependence structure is preferred, as expected.

Next, we present four main figures, that can summarize the principal findings of the paper for

the entire period taking into account the magnitude of the preferences via sequential predictive

log Bayes Factors. In the following figures we report the number of assets that prefer one or

another model type. Preference is measured in terms of differences between as expected , and

if LPSA,i − LPSB,i > 0, it is said that model A is preferred to model B by the asset i. This

classification loses information about the strength of the preference. Therefore, we also report the

average sequential predictive log Bayes Factor. Averaging across assets is not intuitively appealing,

however, it can convey important information on the average strength of the preference.
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Figure 2: RV vs. SV-based models.

Figure 2 compares how many assets in total prefer RV versus SV-based models. Out of 20

models in total, half of them (ten) are RV-based, and the other half are SV-based (for a complete

list of models refer to Table 3 in the Appendix A.2). For example, model (1) is compared to its

’counterpart’ model (5), which both are the same in almost every aspect, except for volatility

modeling approach, i.e. RV vs. SV. Then, for asset i, we perform ten comparisons and if RV-based

model is preferred > 5 times, we say that asset i prefers RV-based models. If asset i prefers

RV-based models half of the time, then we say that asset i is indifferent. As seen in the top part

of the Figure 2, exactly for half of the assets RV-based models perform better, and the other

half prefer the SV-based models. The bottom plot of the figure draws sequential predictive log

Bayes Factor, averaged across all assets, for 10 RV vs. SV-based model combinations. Here we

can see that even though half of the assets prefer one or another volatility model, the preference

for RV-based models is much stronger on average. A log Bayes Factor > 5 indicates a strong
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preference from one model over another, see Kass and Raftery (1995) for the interpretation of the

Bayes Factors. This is an important result in the sense that availability of high frequency data can

improve predictive performance of the one step ahead log returns. Finally, one can see an increase

in sequential predictive log Bayes Factors around the year 2008, meaning that the predictive power

of RV-based models increases during financial turmoils.

- Assets that prefer the RV-based models are: ”AIG” ”BA” ”BAC” ”C” ”F” ”GS” ”HPQ”

”JPM” ”NKE” ”XOM”.

- Assets that prefer the SV-based models are: ”GE” ”HD” ”IBM” ”JNJ” ”KO” ”MO” ”PFE”

”PG” ”VZ” ”WMT”.
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Figure 3: Clayton copula (CC) vs. Normal copula (NC)-based models.

Figure 3 compares how many assets prefer Clayton copula (CC) based models vs. Normal copula

(NC) based models. Out of 20 models in total, 8 are CC-based and 8 are NC-based. In the top plot
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we can observe that more assets prefer CC-based models. Also, there are 4 assets in the ’indifferent’

category, meaning that half of the time these assets preferred CC, another half NC-based models.

The bottom plot of the figure indicates that the preference on average is not conclusive, meaning

that it is asset-specific. In other words, some assets exhibit symmetric and others - asymmetric

dependence structures. As mentioned before, the first draft of the manuscript also included Gumbel

copula based models, however, it always performed the worst and due to space restrictions we are

not reporting estimation results.

- Assets that prefer the CC-based models are: ”AIG” ”BA” ”F” ”GS” ”HD” ”JNJ” ”KO”

”PFE” ”PG” ”WMT” ”XOM”.

- Assets that are indifferent to CC vs. NC-based models are: ”BAC” ”HPQ” ”IBM” ”NKE”.

- Assets that prefer the NC-based models are: ”C” ”GE” ”JPM” ”MO” ”VZ”.
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Figure 4: Lagged returns (r) vs. dividend yield (DY)-based models.
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Next, Figure 4 presents which is a more powerful predictor for the daily log returns: lagged

log returns or lagged dividend yield. In total there are 10 lagged return-based and 10 dividend

yield-based models. As seen from the top plot, for the majority of the assets dividend yield is a

stronger predictor variable than the lagged returns. The strength of the preference is moderate, in

the sense that bottom plot sequential predictive log Bayes Factors seem to favorite dividend yield

based models.

- Assets that prefer the lagged returns-based models are: ”BA”.

- Assets that are indifferent to lagged returns vs. dividend yield as predictor variable are: ”AIG”

”HPQ” ”JNJ” ”VZ”.

- Assets that prefer the dividend yield-based models are: ”BAC” ”C” ”F” ”GE” ”GS” ”HD”

”IBM” ”JPM” ”KO” ”MO” ”NKE” ”PFE” ”PG” ”WMT” ”XOM”.
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Figure 5: hierarchical (h) vs. static (s) vs. dynamic (d) models.
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Figure 5 compares only Normal copula based (i.e. linear dependence structure) models across

different ways of modeling the dependence parameter: hierarchical (h) and dynamic (d). Also, we

include the four linear static (s) models, that are defined in (11) and (12). Note that in a static

setting a simple linear model is used (similarly as seen in Johannes et al., 2014) there is a single

parameter to be estimated. Hierarchical dependence structure allows more flexibility, since the

hyper-parameters (mean and variance) are estimated and the parameter, governing dependence

structure is treated as a latent random variable. Finally, dynamic model follows a random walk

structure, where apart from filtering the latent variable we also estimate the variance parameter. As

seen from the bottom plot of the Figure 5, the hierarchical model (h) on average is strongly preferred

to the dynamic model (d) and preferred to the static (s) dependence structure. The top plot of

the figure indicates that all assets prefer hierarchical rather than static dependence structures. In

general, this figure summarizes two important results. Firstly, contrary to Johannes et al. (2014),

dynamic dependence structure produces lower Bayes Factors than the static dependence structure.

Although important to notice that Johannes et al. (2014) investigate monthly data, whereas our

results are based on daily data. Secondly, hierarchical dependence structure seems to be the most

flexible, at least for daily data.

4 Concluding Remarks

In this paper, we consider hierarchical and time-varying stochastic copulas to model dependence

between a single financial asset and two alternative predictor variables: its lagged value and dividend

yield. We have designed a fast one-step estimation procedure based on the SMC techniques, that

allow for consistent model comparison via log predictive Bayes Factors. We apply the proposed

models to daily log returns of 20 assets traded at the NYSE and we find a number of important

results.

Firstly, on average, RV-based models outperform the SV-based models in terms of sequential

23



predictive log Bayes Factors. Moreover, more assets exhibit asymmetric dependence structure

preferring Clayton copula to Normal copula models. Also, for majority of the assets dividend yield

is a better predictor variable than the lagged returns. Finally, flexible hierarchical dependence

structure is preferred by all assets versus dynamic random walk or static dependence structures.

Considering two sub-periods separately (calm and volatile), we have found that for calm period

dividend yield is a better predictor variable, meanwhile during the crisis periods lagged return is a

better predictor variable for the majority of the assets. As for the dependence structure, we find

that for calm period it is reasonable to consider less flexible dynamics for the dependence parameter,

however, for the crisis period a more flexible hierarchical dependence structure is preferred.

Outlook

The possible extensions is to specify a HAR model for forecasting RV, and the distribution of the

returns, for longer horizons. This should be done together with departing from bivariate copula to

multivariate case that would permit to consider more than one lag of the log returns as well as the

dividend yield simultaneously. Another line of extensions could consider multivariate extensions

and perform portfolio allocation exercise.
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A Appendix

A.1 Technical Appendix

For a state-space model described in (9) particle filter solves hidden state filtering problem for a set of

fixed parameters ΘC and ΘV . A set of sufficient statistics St contains all updated hyper-parameters,

necessary for the parameter simulation, as well as filtered state variables xt, all approximated by a

set of N particles. For t = 1 . . . , T iterate through the following steps:

1. (Blind) Propagating.

Sample new hidden states xt+1 from xt+1 ∼ p(xt+1|xt,ΘC) and obtain θt+1 deterministically.

Sample ht+1 from p(ht+1|ht,ΘV ) (only for the SV model).

(a.1) For the hierarchical model, where x = xt+1, the dependence on the hyperparamaters mx

and Vx can be integrated out analytically:

p(xt+1) =

∫ ∫
p(xt+1|mx, Vx)p(mx, Vx)dmxdVx

=

∫ ∫
fN(xt+1|mx, Vx)fN(mx|Vx)fIG(Vx)dmxdVx

=
Γ
(
b0+1
2

)
Γ
(
b0
2

) (π(b0Vx0)(Vm + 1))−1/2

(
1 +

(xt+1 −mm)2

(b0Vx0)(Vm + 1)

)− b0+1
2

,

which implies that xt+1 has a Student-t distribution with b0 > 0 degrees of freedom,

location parameter mm, and scale parameter (b0Vx0)(Vm + 1)/b0 > 0.

(a.2) For the dynamic model for xt+1 the dependence on the hyperparamater Vx, same as
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before, can be integrated out analytically:

p(xt+1|xt) =

∫
p(xt+1|xt, Vx)p(Vx|xt)dVx

=

∫
fN(xt+1|xt, Vx)fIG(Vx)dVx

=
Γ
(
b0+1
2

)
Γ
(
b0
2

) (π(b0Vx0))
−1/2

(
1 +

(xt+1 − xt)2

(b0Vx0)

)− b0+1
2

,

which implies that xt+1 has a Student-t distribution with b0 > 0 degrees of freedom,

location parameter xt, and scale parameter (b0Vx0)/b0 > 0.

2. Resampling.

Resample old particles (parameters and the set of sufficient statistics, including states) with

weights w ∝ p(ut+1, ut; θt+1), that are proportional to the predictive density of the (ut+1, ut),

where ut+1 = Φ(rt+1/σ
(l)
t+1), such that l = {SV,RV }. u(j)t is either the transformed lagged

return, or transformed dividend yield, i.e. j ∈ {r,DY }. The components of ΘC and ΘV have

been simulated at the end of the previous period. The resampled particles are denoted by a

tilde above the particle, as in Θ̃, for example. Note, that σ
(l)
t+1 is either propagated in the

previous step (for the SV model), or is observed (for the RV model).

3. Propagating sufficient statistics and learning ΘC.

For the hierarchical model:

(c.1) Sample Vx from IG(Vx; b
?
0/2, b

?
0V

?
x0/2), where

b?0 = b̃0 + 1 and b?0V
?
x0 = b̃0Ṽx0 +

(x̃t+1 − m̃m)2

1 + Ṽm
.

(c.2) Sample mx from N (mx;m
?
m, V

?
mVx), where

m?
m =

m̃m + Ṽmx̃t+1

1 + Ṽm
and V ?

m =
Ṽm

1 + Ṽm
.

30



For the dynamic model:

(c.3) Sample Vx from IG(Vx; b
?
0/2, b

?
0V

?
x0/2), where

b?0 = b̃0 + 1 and b?0V
?
x0 = b̃0Ṽx0 + (x̃t+1 − x̃t)2.

4. Propagating sufficient statistics and learning ΘV , where ht+1 is either observed (RV)

or filtered (SV) volatility, depending on the model.

(d.1) Sample τ 2(i) from IG(τ 2(i); b
(i)?
0 /2, b?0τ

2?
0 /2), where

b?0 = b̃0 + 1 and b?0τ
2?
0 = b̃0τ̃

2
0 +

(m̃φh̃t − (h̃t+1 − µ̃))2

1 + Ṽφh̃2t
.

(d.2) Sample φ from N (φ;m?
φ, V

?
φ τ

2), where

m?
φ =

m̃φ + Ṽφh̃t(h̃t+1 − µ̃)

1 + Ṽφh̃2t
and V ?

φ =
Ṽφ

1 + Ṽφh̃2t
.

(d.3) Sample µ from N (µ;m?
µ, V

?
µ ), where

m?
µ =

m̃µτ
2 + Ṽµ(h̃t+1 − φh̃t)

τ 2 + Ṽµ
and V ?

µ =
τ 2Ṽµ

τ 2 + Ṽµ
.

A.2 Tables
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Table 1: Gaussian and Clayton copulas: CDF, PDF and Kendall’s τs.

Gaussian

CDF C(u, v; θ) = Φ2(Φ
−1(u),Φ−1(v); θ), θ ∈ [0, 1]

PDF c(u, v; θ) = (1− θ2)−1/2 exp
{

2θxy−θ2(x2+y2)
2(1−θ2)

}
, x = Φ−1(u), y = Φ−1(v)

τ τκ = 2 arcsin(θ)/π, θ = sin(πτκ/2)

Clayton

CDF C(u, v; θ) = Φ2(Φ
−1(u),Φ−1(v); θ), θ ∈ [0, 1]

PDF c(u, v; θ) = (1− θ2)−1/2 exp
{

2θxy−θ2(x2+y2)
2(1−θ2)

}
, x = Φ−1(u), y = Φ−1(v)

τ τκ = 2 arcsin(θ)/π, θ = sin(πτκ/2)
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Table 2: Abbreviations and the full names of the US stocks.

”AIG” American International Group, Inc.

”BA” The Boeing Company

”BAC” Bank of America Corporation

”C” Citigroup Inc.

”F” Ford Motor Company

”GE” General Electric Company

”GS” The Goldman Sachs Group, Inc.

”HD” The Home Depot, Inc.

”HPQ” HP Inc.

”IBM” International Business Machines Corporation

”JNJ” Johnson & Johnson

”JPM” JPMorgan Chase & Co.

”KO” The Coca-Cola Company

”MO” Altria Group, Inc.

”NKE” NIKE, Inc.

”PFE” Pfizer Inc.

”PG” The Procter & Gamble Company

”VZ” Verizon Communications Inc.

”WMT” Wal-Mart Stores, Inc.

”XOM” Exxon Mobil Corporation
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Table 3: Average log predictive scores for 20 assets for 20 models (sample: 03.01.2001 - 01.12.2014)

AIG BA BAC C F GE GS HD HPQ IBM

(1) NC-RV-d-r -1.761 -1.546 -1.619 -1.693 -1.837 -1.459 -1.679 -1.555 -1.699 -1.285

(2) NC-RV-d-dy -1.754 -1.547 -1.617 -1.686 -1.834 -1.455 -1.678 -1.550 -1.697 -1.282

(3) NC-RV-h-r -1.756 -1.542 -1.613 -1.687 -1.831 -1.453 -1.673 -1.549 -1.692 -1.278

(4) NC-RV-h-dy -1.757 -1.542 -1.613 -1.686 -1.831 -1.452 -1.673 -1.548 -1.692 -1.278

(5) NC-SV-d-r -1.772 -1.551 -1.622 -1.705 -1.844 -1.451 -1.684 -1.556 -1.709 -1.284

(6) NC-SV-d-dy -1.763 -1.552 -1.621 -1.698 -1.840 -1.452 -1.685 -1.551 -1.709 -1.282

(7) NC-SV-h-r -1.766 -1.546 -1.616 -1.698 -1.836 -1.445 -1.678 -1.546 -1.703 -1.277

(8) NC-SV-h-dy -1.766 -1.546 -1.615 -1.696 -1.835 -1.445 -1.677 -1.546 -1.702 -1.277

(9) CC-RV-d-r -1.759 -1.546 -1.619 -1.692 -1.839 -1.459 -1.678 -1.554 -1.698 -1.284

(10) CC-RV-d-dy -1.754 -1.548 -1.618 -1.688 -1.834 -1.456 -1.677 -1.550 -1.700 -1.283

(11) CC-RV-h-r -1.756 -1.542 -1.613 -1.686 -1.831 -1.453 -1.674 -1.548 -1.692 -1.278

(12) CC-RV-h-dy -1.756 -1.542 -1.613 -1.687 -1.831 -1.451 -1.673 -1.548 -1.693 -1.278

(13) CC-SV-d-r -1.772 -1.552 -1.624 -1.706 -1.844 -1.456 -1.684 -1.553 -1.709 -1.287

(14) CC-SV-d-dy -1.760 -1.554 -1.622 -1.701 -1.838 -1.452 -1.684 -1.550 -1.709 -1.283

(15) CC-SV-h-r -1.765 -1.545 -1.615 -1.695 -1.836 -1.446 -1.676 -1.546 -1.702 -1.277

(16) CC-SV-h-dy -1.765 -1.546 -1.616 -1.698 -1.835 -1.444 -1.676 -1.546 -1.703 -1.277

(17) L-RV-s-r -1.756 -1.543 -1.613 -1.687 -1.832 -1.453 -1.674 -1.549 -1.693 -1.279

(18) L-RV-s-dy -1.764 -1.544 -1.614 -1.687 -1.832 -1.453 -1.674 -1.549 -1.694 -1.280

(19) L-SV-s-r -1.767 -1.547 -1.620 -1.698 -1.836 -1.445 -1.683 -1.556 -1.704 -1.279

(20) L-SV-s-dy -1.767 -1.548 -1.617 -1.697 -1.835 -1.449 -1.678 -1.547 -1.704 -1.278

JNJ JPM KO MO NKE PFE PG VZ WMT XOM

(1) NC-RV-d-r -1.016 -1.643 -1.138 -1.266 -1.489 -1.390 -1.070 -1.362 -1.224 -1.316

(2) NC-RV-d-dy -1.011 -1.641 -1.133 -1.263 -1.487 -1.387 -1.069 -1.361 -1.223 -1.315

(3) NC-RV-h-r -1.011 -1.637 -1.132 -1.262 -1.484 -1.385 -1.065 -1.357 -1.219 -1.311

(4) NC-RV-h-dy -1.011 -1.637 -1.131 -1.262 -1.484 -1.385 -1.064 -1.358 -1.219 -1.311

(5) NC-SV-d-r -1.010 -1.654 -1.135 -1.267 -1.496 -1.388 -1.064 -1.359 -1.223 -1.320

(6) NC-SV-d-dy -1.009 -1.652 -1.134 -1.263 -1.494 -1.387 -1.064 -1.358 -1.221 -1.318

(7) NC-SV-h-r -1.003 -1.646 -1.129 -1.258 -1.488 -1.381 -1.058 -1.350 -1.215 -1.310

(8) NC-SV-h-dy -1.003 -1.645 -1.128 -1.258 -1.488 -1.382 -1.058 -1.351 -1.215 -1.310

(9) CC-RV-d-r -1.014 -1.644 -1.137 -1.266 -1.489 -1.389 -1.069 -1.363 -1.223 -1.315

(10) CC-RV-d-dy -1.012 -1.643 -1.132 -1.265 -1.489 -1.386 -1.068 -1.361 -1.221 -1.314

(11) CC-RV-h-r -1.011 -1.637 -1.131 -1.262 -1.484 -1.385 -1.065 -1.357 -1.219 -1.310

(12) CC-RV-h-dy -1.012 -1.638 -1.131 -1.263 -1.484 -1.385 -1.065 -1.357 -1.219 -1.310

(13) CC-SV-d-r -1.010 -1.654 -1.139 -1.265 -1.496 -1.389 -1.066 -1.359 -1.224 -1.319

(14) CC-SV-d-dy -1.009 -1.655 -1.134 -1.266 -1.494 -1.387 -1.064 -1.359 -1.222 -1.317

(15) CC-SV-h-r -1.003 -1.644 -1.129 -1.259 -1.488 -1.382 -1.058 -1.351 -1.215 -1.310

(16) CC-SV-h-dy -1.003 -1.646 -1.128 -1.258 -1.488 -1.382 -1.058 -1.352 -1.215 -1.311

(17) L-RV-s-r -1.012 -1.637 -1.132 -1.263 -1.484 -1.386 -1.066 -1.358 -1.220 -1.312

(18) L-RV-s-dy -1.014 -1.639 -1.132 -1.265 -1.485 -1.385 -1.068 -1.357 -1.220 -1.313

(19) L-SV-s-r -1.004 -1.650 -1.129 -1.260 -1.491 -1.385 -1.061 -1.351 -1.217 -1.312

(20) L-SV-s-dy -1.005 -1.649 -1.131 -1.261 -1.489 -1.384 -1.061 -1.353 -1.216 -1.311
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Table 4: Average log predictive scores for 20 assets for 20 models (sample: 02.01.2002 - 29.12.2006)

AIG BA BAC C F GE GS HD HPQ IBM

(1) NC-RV-d-r -1.473 -1.564 -1.195 -1.366 -1.802 -1.362 -1.581 -1.570 -1.756 -1.333

(2) NC-RV-d-dy -1.463 -1.567 -1.188 -1.355 -1.799 -1.353 -1.577 -1.566 -1.750 -1.325

(3) NC-RV-h-r -1.469 -1.560 -1.188 -1.359 -1.795 -1.355 -1.576 -1.564 -1.748 -1.326

(4) NC-RV-h-dy -1.470 -1.560 -1.188 -1.358 -1.795 -1.354 -1.575 -1.563 -1.748 -1.326

(5) NC-SV-d-r -1.485 -1.559 -1.207 -1.388 -1.810 -1.356 -1.583 -1.568 -1.774 -1.330

(6) NC-SV-d-dy -1.475 -1.562 -1.202 -1.377 -1.808 -1.352 -1.582 -1.563 -1.770 -1.328

(7) NC-SV-h-r -1.479 -1.555 -1.201 -1.382 -1.803 -1.348 -1.580 -1.558 -1.767 -1.325

(8) NC-SV-h-dy -1.480 -1.555 -1.199 -1.379 -1.803 -1.350 -1.578 -1.558 -1.767 -1.324

(9) CC-RV-d-r -1.468 -1.562 -1.192 -1.363 -1.801 -1.361 -1.579 -1.566 -1.755 -1.334

(10) CC-RV-d-dy -1.459 -1.566 -1.186 -1.352 -1.799 -1.356 -1.578 -1.564 -1.751 -1.327

(11) CC-RV-h-r -1.468 -1.559 -1.187 -1.358 -1.795 -1.354 -1.575 -1.563 -1.748 -1.326

(12) CC-RV-h-dy -1.468 -1.560 -1.186 -1.355 -1.795 -1.354 -1.575 -1.564 -1.748 -1.326

(13) CC-SV-d-r -1.481 -1.558 -1.206 -1.390 -1.812 -1.360 -1.583 -1.564 -1.774 -1.336

(14) CC-SV-d-dy -1.471 -1.563 -1.201 -1.381 -1.807 -1.352 -1.585 -1.559 -1.769 -1.330

(15) CC-SV-h-r -1.478 -1.555 -1.200 -1.378 -1.803 -1.350 -1.578 -1.558 -1.766 -1.324

(16) CC-SV-h-dy -1.478 -1.555 -1.200 -1.384 -1.803 -1.345 -1.580 -1.558 -1.767 -1.325

(17) L-RV-s-r -1.469 -1.559 -1.188 -1.359 -1.796 -1.355 -1.576 -1.564 -1.749 -1.326

(18) L-RV-s-dy -1.464 -1.561 -1.182 -1.355 -1.796 -1.356 -1.576 -1.565 -1.752 -1.325

(19) L-SV-s-r -1.479 -1.554 -1.204 -1.380 -1.804 -1.347 -1.585 -1.565 -1.768 -1.325

(20) L-SV-s-dy -1.468 -1.556 -1.193 -1.375 -1.804 -1.355 -1.581 -1.559 -1.768 -1.324

JNJ JPM KO MO NKE PFE PG VZ WMT XOM

(1) NC-RV-d-r -1.111 -1.513 -1.197 -1.365 -1.430 -1.453 -1.122 -1.463 -1.342 -1.398

(2) NC-RV-d-dy -1.100 -1.506 -1.189 -1.366 -1.428 -1.450 -1.121 -1.457 -1.335 -1.395

(3) NC-RV-h-r -1.106 -1.505 -1.190 -1.364 -1.424 -1.448 -1.114 -1.457 -1.335 -1.392

(4) NC-RV-h-dy -1.106 -1.504 -1.190 -1.364 -1.425 -1.448 -1.114 -1.458 -1.335 -1.392

(5) NC-SV-d-r -1.098 -1.520 -1.199 -1.369 -1.438 -1.466 -1.115 -1.457 -1.344 -1.390

(6) NC-SV-d-dy -1.094 -1.517 -1.197 -1.369 -1.437 -1.462 -1.114 -1.456 -1.337 -1.385

(7) NC-SV-h-r -1.089 -1.512 -1.192 -1.366 -1.430 -1.459 -1.107 -1.452 -1.334 -1.379

(8) NC-SV-h-dy -1.089 -1.510 -1.190 -1.363 -1.431 -1.459 -1.107 -1.452 -1.334 -1.380

(9) CC-RV-d-r -1.111 -1.510 -1.197 -1.366 -1.427 -1.452 -1.119 -1.465 -1.340 -1.396

(10) CC-RV-d-dy -1.103 -1.508 -1.188 -1.369 -1.430 -1.451 -1.124 -1.458 -1.336 -1.392

(11) CC-RV-h-r -1.106 -1.504 -1.190 -1.363 -1.424 -1.448 -1.114 -1.458 -1.334 -1.391

(12) CC-RV-h-dy -1.108 -1.504 -1.190 -1.365 -1.425 -1.448 -1.117 -1.457 -1.336 -1.390

(13) CC-SV-d-r -1.098 -1.515 -1.203 -1.374 -1.437 -1.467 -1.113 -1.459 -1.343 -1.389

(14) CC-SV-d-dy -1.090 -1.521 -1.195 -1.368 -1.437 -1.464 -1.115 -1.456 -1.337 -1.384

(15) CC-SV-h-r -1.089 -1.507 -1.191 -1.363 -1.431 -1.459 -1.107 -1.452 -1.333 -1.380

(16) CC-SV-h-dy -1.089 -1.512 -1.191 -1.366 -1.431 -1.459 -1.107 -1.454 -1.333 -1.381

(17) L-RV-s-r -1.106 -1.505 -1.191 -1.364 -1.425 -1.449 -1.115 -1.457 -1.335 -1.392

(18) L-RV-s-dy -1.105 -1.506 -1.190 -1.367 -1.425 -1.447 -1.115 -1.455 -1.332 -1.392

(19) L-SV-s-r -1.090 -1.514 -1.193 -1.363 -1.432 -1.461 -1.109 -1.450 -1.335 -1.381

(20) L-SV-s-dy -1.089 -1.513 -1.194 -1.362 -1.433 -1.459 -1.108 -1.450 -1.333 -1.381
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Table 5: Average log predictive scores for 20 assets for 20 models (sample: 03.01.2007 - 31.12.2012)

AIG BA BAC C F GE GS HD HPQ IBM

(1) NC-RV-d-r -2.180 -1.580 -2.037 -2.062 -2.017 -1.600 -1.857 -1.607 -1.610 -1.258

(2) NC-RV-d-dy -2.177 -1.582 -2.037 -2.060 -2.014 -1.599 -1.856 -1.603 -1.614 -1.254

(3) NC-RV-h-r -2.174 -1.576 -2.031 -2.056 -2.010 -1.594 -1.850 -1.600 -1.604 -1.252

(4) NC-RV-h-dy -2.175 -1.576 -2.031 -2.056 -2.010 -1.593 -1.850 -1.600 -1.604 -1.252

(5) NC-SV-d-r -2.188 -1.596 -2.033 -2.069 -2.027 -1.593 -1.867 -1.614 -1.612 -1.262

(6) NC-SV-d-dy -2.180 -1.595 -2.035 -2.067 -2.020 -1.595 -1.866 -1.611 -1.615 -1.256

(7) NC-SV-h-r -2.181 -1.590 -2.029 -2.061 -2.019 -1.587 -1.859 -1.605 -1.605 -1.254

(8) NC-SV-h-dy -2.182 -1.590 -2.028 -2.061 -2.018 -1.587 -1.858 -1.605 -1.605 -1.254

(9) CC-RV-d-r -2.180 -1.581 -2.038 -2.063 -2.019 -1.600 -1.858 -1.606 -1.609 -1.257

(10) CC-RV-d-dy -2.179 -1.584 -2.039 -2.066 -2.014 -1.602 -1.855 -1.605 -1.618 -1.257

(11) CC-RV-h-r -2.174 -1.576 -2.031 -2.056 -2.010 -1.595 -1.851 -1.600 -1.604 -1.252

(12) CC-RV-h-dy -2.176 -1.576 -2.032 -2.060 -2.010 -1.594 -1.851 -1.600 -1.606 -1.251

(13) CC-SV-d-r -2.190 -1.597 -2.038 -2.071 -2.027 -1.600 -1.867 -1.613 -1.612 -1.264

(14) CC-SV-d-dy -2.175 -1.598 -2.037 -2.069 -2.018 -1.596 -1.862 -1.611 -1.616 -1.257

(15) CC-SV-h-r -2.181 -1.589 -2.027 -2.061 -2.019 -1.589 -1.858 -1.605 -1.605 -1.254

(16) CC-SV-h-dy -2.181 -1.590 -2.029 -2.062 -2.018 -1.590 -1.857 -1.606 -1.606 -1.254

(17) L-RV-s-r -2.173 -1.577 -2.031 -2.056 -2.011 -1.594 -1.850 -1.600 -1.604 -1.252

(18) L-RV-s-dy -2.198 -1.576 -2.036 -2.060 -2.010 -1.595 -1.851 -1.600 -1.605 -1.253

(19) L-SV-s-r -2.183 -1.590 -2.029 -2.061 -2.018 -1.588 -1.858 -1.612 -1.605 -1.255

(20) L-SV-s-dy -2.195 -1.590 -2.033 -2.065 -2.017 -1.588 -1.858 -1.605 -1.606 -1.256

JNJ JPM KO MO NKE PFE PG VZ WMT XOM

(1) NC-RV-d-r -0.9344 -1.842 -1.101 -1.207 -1.570 -1.372 -1.051 -1.322 -1.167 -1.347

(2) NC-RV-d-dy -0.9336 -1.843 -1.095 -1.204 -1.566 -1.372 -1.055 -1.323 -1.168 -1.344

(3) NC-RV-h-r -0.9292 -1.838 -1.094 -1.201 -1.562 -1.368 -1.048 -1.315 -1.164 -1.342

(4) NC-RV-h-dy -0.9294 -1.838 -1.093 -1.201 -1.562 -1.368 -1.047 -1.316 -1.164 -1.342

(5) NC-SV-d-r -0.9336 -1.856 -1.098 -1.206 -1.575 -1.360 -1.045 -1.316 -1.167 -1.364

(6) NC-SV-d-dy -0.9337 -1.855 -1.094 -1.203 -1.573 -1.363 -1.048 -1.315 -1.165 -1.361

(7) NC-SV-h-r -0.9263 -1.849 -1.090 -1.194 -1.566 -1.355 -1.042 -1.304 -1.159 -1.353

(8) NC-SV-h-dy -0.9263 -1.849 -1.089 -1.195 -1.566 -1.356 -1.041 -1.306 -1.159 -1.354

(9) CC-RV-d-r -0.9317 -1.845 -1.100 -1.205 -1.569 -1.372 -1.051 -1.321 -1.167 -1.346

(10) CC-RV-d-dy -0.9290 -1.847 -1.094 -1.204 -1.568 -1.367 -1.051 -1.320 -1.164 -1.347

(11) CC-RV-h-r -0.9287 -1.839 -1.094 -1.201 -1.562 -1.368 -1.048 -1.315 -1.164 -1.341

(12) CC-RV-h-dy -0.9281 -1.839 -1.093 -1.202 -1.562 -1.367 -1.047 -1.315 -1.162 -1.342

(13) CC-SV-d-r -0.9325 -1.859 -1.102 -1.200 -1.575 -1.362 -1.051 -1.313 -1.168 -1.363

(14) CC-SV-d-dy -0.9352 -1.860 -1.094 -1.206 -1.573 -1.361 -1.047 -1.315 -1.168 -1.361

(15) CC-SV-h-r -0.9258 -1.849 -1.090 -1.198 -1.565 -1.355 -1.042 -1.305 -1.159 -1.353

(16) CC-SV-h-dy -0.9263 -1.850 -1.089 -1.195 -1.566 -1.356 -1.041 -1.306 -1.159 -1.355

(17) L-RV-s-r -0.9292 -1.837 -1.095 -1.201 -1.562 -1.369 -1.048 -1.316 -1.164 -1.342

(18) L-RV-s-dy -0.9339 -1.839 -1.094 -1.201 -1.563 -1.369 -1.051 -1.317 -1.166 -1.343

(19) L-SV-s-r -0.9262 -1.851 -1.089 -1.195 -1.568 -1.358 -1.042 -1.306 -1.159 -1.354

(20) L-SV-s-dy -0.9272 -1.851 -1.090 -1.198 -1.566 -1.358 -1.043 -1.307 -1.162 -1.353
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