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Abstract

Inclan and Tiao (1994) proposed a test for the detection of changes
of the unconditional variance which has been used in financial time series
analysis. In this article we show some serious drawbacks for using this test
with this type of data. Specifically, it suffers important size distortions for
leptokurtic and platykurtic innovations. Moreover, the size distortions are
more extreme for heteroskedastic conditional variance processes. These
results invalidate in practice the use of the test for financial time series.
To overcome these problems we propose new tests that explicitly consider
the fourth moment properties of the disturbances and the conditional
heteroskedasticity. Monte Carlo experiments show the good performance
of these tests. The application of the new tests to the same series in
Aggarwal, Inclan and Leal (1999) reveal that the changes in variance they
detect are spurious.
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1 Introduction
Inclan and Tiao (1994) -IT hereafter- proposed a statistic to test for changes
in the unconditional variance of a stochastic process. This test is based on the
assumption that the disturbances are independent and Gaussian distributed,
conditions that could be considered as extreme for financial time series pro-
vided that they usually show empirical distributions with fat tails (leptokurtic)
and persistence in the conditional variance. Despite of this, the test has been
extensively used for detecting changes in the volatility of financial time series
such as returns, see, among others, Wilson et al. (1996), Aggarwal, Inclan and
Leal (1999) and Huang and Yang (2001). For instance, Figure 1 shows the
detected changes in the unconditional variance using the IT procedure by Ag-
garwal, Inclan and Leal (1999). As can be seen, several breaks are detected,
some of them lasting few observations, which casts doubts on the real number
of the changes that can be obtained by the application of the IT method.

[insert figure 1 about here]

In this paper we show that the asymptotic distribution of the IT test is free
of nuisance parameters only when the stochastic process is mesokurtic and the
conditional variance is constant. Otherwise, the distribution depends on some
parameters and one would expect to find size distortions for the test when the
process is non-mesokurtic and/or there is some persistence in the conditional
variance. This will drive to find spurious changes in the unconditional variance.
To overcome these problems, we propose new tests that take into account the
fourth moment of the process and the persistence in the variance. These tests
have an asymptotic distribution free of nuisance parameters and belong to the
CUSUM-type tests family —see Andreou and Ghysels (2002) for a discussion on
the recent literature. Moreover, we will also show that the IT test diverges
when the disturbances are IGARCH.
The plan of the paper is as follows. Section 2 considers in some detail the

IT test and its asymptotic distribution for both mesokurtic and non-mesokurtic
processes. A new test that explicitly considers the fourth moment of the process
is introduced. Section 3 focus on processes with persistence in the conditional
variance. It is shown that the preceding tests, which do not consider such a per-
sistence, have asymptotic distributions which depend on nuisance parameters.
Subsequently, a modified version of the IT is proposed. Moreover, the asymp-
totic behavior of the three tests for IGARCH processes are also considered.
Section 4, considers the Iterated Cumulative Sum of Squares (ICSS) algorithm
suggested by Inclan and Tiao (1994) and adapts it to the suggested new tests.
Given that this procedure needs to compute the tests for different sample sizes,
we estimate response surfaces to generate critical values for any sample size.
In Section 5, some Monte Carlo experiments confirm that the limit results de-
rived in the preceding sections are also relevant in finite samples. The main
conclusion of these simulations is that the κ2 test we propose, which considers
both the persistence in the variance as well as the kurtosis of the distribution,
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outperforms the other two tests and therefore should be used instead in applied
research. In Section 6 we apply the ICSS procedure based on the new tests to
the same series considered in Aggarwal, Inclan and Leal (1999) and we show that
the changes in variance they detect are spurious. Finally, Section 7 concludes.
The proofs of all propositions are collected in the Appendix.

2 The Inclan-Tiao test
In order to test the null hypothesis of constant unconditional variance, Inclan
and Tiao (1994) proposed to use the statistic given by

IT = sup
k

¯̄̄p
T/2Dk

¯̄̄
where

Dk =
Ck

CT
− k

T

and Ck =
Pk

t=1 ε
2
t , k = 1, ..., T, is the cumulative sum of squares of εt. Under

the assumption that εt are a zero-mean, normally, identically and independently
distributed random variables, εt ∼ iidN

¡
0, σ2

¢
, the asymptotic distribution of

the test is given by:
IT ⇒ sup

r
|W ∗ (r)| (1)

where W ∗ (r) ≡ W (r) − rW (1) is a Brownian Bridge, W (r) is a standard
Brownian motion and ⇒ stands for weak convergence of the associated proba-
bility measures.
The most serious drawback of the IT test is that its asymptotic distribution

free of nuisance parameters critically depends on the assumption of normally,
independently and identically distributed random variables εt. The following
proposition establishes the asymptotic distribution of the test for the rather
general case εt ∼ iid

¡
0, σ2

¢
.

Proposition 1 If εt ∼ iid
¡
0, σ2

¢
, and E

¡
ε4t
¢ ≡ η4 <∞, then

IT ⇒
r

η4 − σ4

2σ4
sup
r
|W ∗ (r)| .

Hence, the distribution is not free of nuisance parameters and size distortions
should be expected when using the critical values of the supremum of a Brownian
Bridge. Note that for Gaussian processes η4 = 3 σ4 and IT ⇒ supr |W ∗ (r)|.
When η4 > 3 σ4, the distribution is leptokurtic (heavily tailed) and too many
rejections of the null hypothesis of constant variance should be expected, with
an effective size greater than the nominal one. Contrarily, when η4 < 3 σ4 the
test will be too conservative. In section 6 the finite sample performance of IT
in such cases will be studied.
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Proposition 1 suggests the following correction to the previous test that will
be free of nuisance parameters for identical and independent zero-mean random
variables:

κ1 = sup
k

¯̄̄
T−1/2Bk

¯̄̄
where

Bk =
Ck − k

T CTqbη4 − bσ4 ,
bη4 = T−1

PT
t=1 ε

4
t and bσ2 = T−1CT . Its asymptotic distribution is established

in the following proposition.

Proposition 2 If εt ∼ iid
¡
0, σ2

¢
, and E

¡
ε4t
¢ ≡ η4 <∞, then κ1 ⇒ supr |W ∗ (r)| .

Table 1 shows the finite sample critical values for κ1. They have been com-
puted from 50,000 replications of εt ∼ iidN (0, 1), t = 1, ..., T. A response surface
to generate critical values for a wider range of samples sizes will be presented
in Section 5.

[insert Table 1 about here]

Given that this statistic is free of nuisance parameters, we will expect a
correct size when the disturbances are iid. Section 6 will examine the finite
sample performance for both the IT and κ1 tests. Before that, we consider the
case of a conditionally heteroskedastic process.

3 Conditionally heteroskedastic processes
Both tests, IT and κ1 in the previous Section, depend on the independence of
the random variables. This is a very strong assumption for financial data, where
there is evidence of conditional heteroskedasticity, see, for instance, Bera and
Higgins (1993), Bollerslev et al. (1992, 1994) and Taylor (1986). In order to
consider this situation explicitly, an estimation of the persistence may be used
to correct the cumulative sum of squares. Nevertheless, some assumptions on
εt are required.
Assumptions A1: Assume that the sequence of random variables {εt}∞t=1

satisfies:

1. E (εt) = 0 and E
¡
ε2t
¢
= σ2 <∞ for all t ≥ 1;

2. suptE
³
|εt|ψ+�

´
<∞ for some ψ ≥ 4 and � > 0;

3. ω4 = limT→∞E

µ
T−1

³PT
t=1

¡
ε2t − σ2

¢´2¶
<∞ exists, and

4. {εt} is α−mixing with coefficients αj which satisfy
P∞

j=1 α
(1−2/ψ)
j <∞.
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This set of assumptions is similar to that of Herrndorf (1984) and Phillips
and Perron (1988) but here we need to impose the existence of moments greater
than four and a common unconditional variance for all the variables of the
sequence, which is the hypothesis we wish to test. Obviously, the existence of
the fourth moments restricts the processes we can deal with. For instance, if εt
is independent and identically distributed as a t-Student with three degrees of
freedom, this sequence does not fulfil conditions 2 and 3. Note that the second
condition does not impose a common fourth moment so that some sort of non-
stationarity is allowed. ω4 can be interpreted as the long-run fourth moment of
εt or the long-run variance of the zero-mean variable ξt ≡ ε2t −σ2.1 Condition 4
controls for the ”degree of independence” of the sequence and shows a trade-off
between the serial dependence and the existence of high order moments. In our
case, by imposing the finiteness of the fourth moments we allow for a greater
degree of serial dependence.
This brings us to propose the following statistic:

κ2 = sup
k

¯̄̄
T−1/2Gk

¯̄̄
where

Gk = bω−1/24

µ
Ck − k

T
CT

¶
and bω4 is a consistent estimator of ω4. One possibility is to use a non-parametric
estimator of ω4,

bω4 = 1

T

TX
t=1

³
ε2t − bσ2´2 + 2

T

mX
l=1

w (l,m)
TX

t=l+1

³
ε2t − bσ2´³ε2t−l − bσ2´

where w (l,m) is a lag window, such as the Bartlett, defined as w (l,m) =
1−l/ (m+ 1), or the quadratic spectral. This estimator depends on the selection
of the bandwidth m, which can be chosen using an automatic procedure as
proposed by Newey-West (1994).2 Note that if ξt = ε2t − bσ2 is not correlated,
then bω4 → E

¡
ξ2t
¢
= η4 − σ4. Kokoszka and Leipus (2000) proposed a test that

is similar to κ2 but departing from a different set of assumptions. Specifically,
they assume an ARCH(∞) process. As can be seen, our framework is more
general than the one of Kokoszka and Leipus (2000).
The limit distribution of the statistics for variance persistent processes is

established in the next proposition.

Proposition 3 Under assumption A1,
1Note that when εt is a strictly stationary sequence ω4 = 2πfξ (0), where fξ (λ), -π ≤ λ ≤

π, is the spectrum of ξt.
2Another possibility is to use a parametric estimation of the long-run variance of ξt based

on the Akaike estimator of the spectrum. That is eω4 = (1 − bλ (1))−2T−1PT
t=1 e

2
t , wherebλ (1) =Pp

j=1
bλj , bλj and et are obtained from the autoregression: ξt = bδ+Pp

j=1
bλjξt−j + et.

Andreou and Ghysels (2002), when computing the Kokoszka and Leipus (2000) test, use the
VARHAC estimator of den Hann and Levin (1997) for ω4.
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a) IT ⇒p
ω4
2σ4 supr |W ∗ (r)|

b) κ1 ⇒
q

ω4
η4−σ4 supr |W

∗ (r)|
c) κ2 ⇒ supr |W ∗ (r)|.

Table 1 shows some finite sample critical values for κ2 computed from 50,000
replications of εt ∼ iidN (0, 1), t = 1, ..., T. A response surface to summarize
the finite sample critical values will be presented in Section 5.
For conditionally heteroskedastic processes one would expect the long-run

fourth moment to be greater than its short-run counterpart η4 − σ4 and, con-
sequently, an oversize for IT and κ1. Let us consider some simple cases. For
the ARCH(1) process (see Engle, 1982), εt = ut

√
ht, where ut ∼ iidN(0, 1) and

ht = δ + γε2t−1, conditional on ε20, with δ ≥ 0 and 0 < γ < 1, it holds:

η4 =
δ2

(1− γ)
2

3
¡
1− γ2

¢
(1− 3γ2)

and

ω4 =
2δ2

(1− γ)
4
(1− 3γ2) .

In this circumstances, ω4
2σ4 =

1
(1−γ)2(1−3γ2) ≥ 1 and the IT test will tend to

overreject the null hypothesis of constant variance. For the κ1 test ω4
η4−σ4 =

1
(1−γ)2 ≥ 1 and we shall expect also an overrejection of the null of constant
unconditional variance. In Section 4 these findings are confirmed for finite sam-
ples.
For the GARCH(1,1) processes (see Bollerslev, 1986) the conditional vari-

ance is given by:
ht = δ + βht−1 + γε2t−1 (2)

The fourth moment exists if β2 + 2βγ + 3γ2 < 1 and is given by:

η4 =
3δ2 (1 + γ + β)

(1− γ − β)
¡
1− β2 − 2βγ − 3γ2¢

with coefficient of kurtosis:

η4
σ4
− 3 = 6γ2

1− β2 − 2βγ − 3γ2 > 0

For the long-run fourth moment we have that

ω4 =
2δ2

¡
1− 2βγ − β2

¢
(1− β)2

(1− γ − β)4
¡
1− β2 − 2βγ − 3γ2¢

Then, if β2+2βγ+3γ2 < 1,which is the condition for the existence of the fourth

moment ω4
2σ4 =

(1−2βγ−β2)(1−β)2
(1−γ−β)2(1−β2−2βγ−3γ2) > 1, and

ω4
η4−σ4 =

(1−β)2
(1−γ−β)2 > 1. Hence,
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as in the ARCH(1) case, we expect that the effective size of IT and κ1 will be
greater than the nominal one.
Similar results are expected when dealing with higher order GARCH processes.3

To sum up, we would expect an overrejection of the null hypothesis for the
IT and the κ1 tests when they are applied to conditionally heteroskedastic
processes.

4 Non-constant fourth moment
As it has been shown in the previous section, the existence of the fourth mo-
ment, rather than its constancy, as well as the finiteness of the long-run fourth
moments, are required to establish the asymptotic distribution of the tests. This
restricts the class of (G)ARCH processes we can deal with using this theory. In
any case, although the results of Proposition 3 are no longer applicable to all
situations, we can try to shed light on some special cases.
Let us consider a simple case, such as the covariance-stationary GARCH(1,1)

process given by (2) but with non-constant fourth moment. That is, β2+2βγ+
3γ2 ≥ 1 and β + γ < 1. In this case, as shown by Ding and Granger (1996),
equation (A.16),

E
¡
ε4t
¢
= η4,t = 3δ

2 1 + γ + β

1− γ − β

tX
i=0

¡
β2 + 2βγ + 3γ2

¢i
tends to infinity. Then, the long-run fourth moment is also time varying and
will tend to infinity. As a consequence, and according to Proposition 3, we
would expect that the IT test will diverge and will tend to detect changes in
variance. Note that this result holds irrespective of whether T−1/2

¡
Ck − k

T CT

¢
,

the numerator of the statistic, diverges or not.
Moreover, assuming a distant starting point for the process, the autocorrela-

tion function of ξ2t is constant and is approximately given by ρk ≈
¡
γ + 1

3β
¢
(γ + β)

k−1,
which decreases exponentially, as it shown by Ding and Granger (1996). Then,

ω4,t
E (ε4t )− σ4

=

1 + 2 ∞X
j=1

ρj


≈ 1 + 2

∞X
j=1

µ
γ +

1

3
β

¶
(γ + β)j−1

=
1 + γ − 1

3β

1− γ − β
> 1

so that, according to Proposition 3, we would expect an overrejection for the κ1
test. If T−1/2

¡
Ck − k

T CT

¢
also diverges, then the distortions in the size of the

test will be greater.
3The conditions for the existence of the fourth moments in the wide family of GARCH

processes where hλt = g (ut−1) + c (ut−1)hλt−1, λ > 0, can be found in Ling and McLeer
(2002).

7



For the κ2 test, ideally computed from Gk = ω
−1/2
4 T−1/2

¡
Ck − k

T CT

¢
, we

may expect that the numerator as well as ω1/24 will tend to diverge, so it is
difficult to guess how will the test be affected in this case. Some Monte Carlo
experiments in Section 6 show that the κ2 is not seriously affected whereas IT
or κ1 have dramatic size distortions.
Let us now consider the case of non-covariance-stationary processes. We

will restrict ourself to the case of IGARCH(1,1) disturbances, although the
generalization to IGARCH(p,q) is straightforward. The following proposition
establishes the distribution of the tests for IGARCH disturbances.

Proposition 4 If εt is an IGARCH(1,1) process then:
a) IT ≈ Op

¡
T 1/2

¢
;

b) κ1 ≈ Op

¡
T 1/2

¢
;

c) κ2 ≈ Op

³
(T/m)

1/2
´
.

As a consequence, and provided that m/T → 0, the tests diverge and will
tend to reject the null hypothesis of constant unconditional variance. This
means that for IGARCH processes one will find that the tests indicate that the
variance is not constant. In this case, the correct procedure is to estimate an
IGARCH process rather than trying to model the changes in the unconditional
variance. The intuition behind this result is that the aforementioned test, as
the usual unit root tests, cannot distinguish between I(1) processes and those
with structural breaks (see, for instance, Perron,1990).

5 Iterative procedure
The iterative procedure proposed by Inclan and Tiao (1994) for detecting multi-
ple changes in variance, known as Iterated Cumulative Sum of Squares (ICSS),
can also be used with the κ1 and κ2 tests. A detailed description of the algo-
rithm can be found in this reference. The method implies to compute the test
several times for different sample sizes. However, using a single critical value
for any sample size may distort the performance of the iterative procedure. To
overcome this drawback, we fitted response surfaces to the finite sample critical
values of the three tests. More formally, the idea is to fit a regression of the
type:

qαi,T =
mX
j=1

θαi,pjT
pj + vi,T (3)

where qαi,T is the quantile α of test i = {IT, κ1, κ2} for a sample size T ; θαi,pj ,
j = {1, ...,m}, are a set of parameters and the regressors are powers of the
sample size. The values of qαi,T were obtained from Monte Carlo experiments,
each of them consisting of 50,000 replications of the process εt ∼ iidN (0, 1),
t = {1, ..., T} and the corresponding test and the empirical quantiles have been
computed. The sample sizes considered were T = {15, 16, ..., 30, 32, ..., 50,
55, ..., 100, 110, ..., 200, 225, ..., 400, 450, ..., 700, 800, 900, 1000}. Therefore,

8



63 experiments for each test were carried out, obtaining 63 observations of
qαi,T which vary with T . Finally, response surfaces as in (3) were fitted to the
empirical quantiles. Table 2 shows the final estimates of the response surfaces

for a 5% significance level, bθ0.05i,pj , as well as some diagnostics.
4

[insert Table 2 about here]

6 Monte Carlo experiments
In this section we will study the finite sample performance of the three consid-
ered tests as well as the ICSS algorithm. Although these have been extensively
applied in empirical analysis of financial time series, few attention has been
paid to the study of their finite sample properties. An exception is Andreou
and Ghysels (2002). Our simulation experiments complement the afore men-
tioned article. Specifically, we will consider their size for iid non-mesokurtic
sequences, for ARCH(1) and for IGARCH(1,1) processes, and their power when
there are some breaks in the unconditional variance. Obviously, the applied
researcher will be interested in the iterative procedure. Nevertheless, to shed
light on the performance of this method when used with the three tests, we
begin by analyzing the size and power of the individual tests.

6.1 Size and power of the tests

The first Monte Carlo experiment has consisted in generating sequences of iid
zero-mean random variables with different coefficients of kurtosis. Specifically,
we have taken into account the Uniform distribution on U (−0.5, 0.5), the stan-
dard Normal, N (0, 1), the standard Logistic, the standard Laplace, the standard
exponential (with parameter 1) and the standard Lognormal. The following ta-
ble shows the rejection frequencies for the tests.

[insert Table 3 about here]

As can be seen, the IT test suffers from severe distortions for non-mesokurtic
processes. As predicted from our asymptotic results, it tends to never reject for
platikurtic distributions whereas tends to overreject for leptokurtic sequences.
The two proposed test are not seriously affected.
The following table shows the rejection frequencies of the three tests when

the data generation process is an ARCH(1) process. As expected from our
theoretical analysis, all tests but κ2 suffer from severe size distortions, as they
ignore the persistence in the conditional variance. Contrarily, κ2 seems to have a
good size properties, even for ARCH processes without constant fourth moment.

4The complete set of results for the significance levels 1%, 2.5% and 10% are available
from the authors upon request. A GAUSS routine to compute the ICSS algorithm with (any
of) the three tests is also available on request. Also, OX routines implemented by Michail
Karoglou and based on our GAUSS code are available.
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[insert Table 4 about here]

Next table shows the rejection frequencies for IGARCH(1,1) processes. Here
all three tests tend to reject the null hypothesis of constant variance when the
DGP is an IGARCH processes. This overrejection is even worse for large samples
(say T = 500). For large values of γ, say greater than 0.7, the size of κ2 is not
really seriously distorted. For these values, the autocorrelations of ε2t —given by

ρk ≈ 1
3 (1 + 2γ)

¡
1 + 2γ2

¢−k/2
(see Ding and Granger, 1996)— quickly tend to

zero. Contrarily, for small values of γ, the persistence of ε2t is large, and κ2 also
shows severe distortions.

[insert Table 5 about here]

Let us consider now the power of the different tests when there is a change
in the unconditional variance of the processes. As can be seen from Table 6, κ2
is the less powerful test, although in no case this lack of power is very extreme.

[insert Table 6 about here]

6.2 Size and power of the iterative procedure

We will study here the performance of the ICSS algorithm when based in one
of the three tests. Given that the empirical applications of Section 7 have a
sample size of about T = 500, this was the one considered. Similar qualitative
results were obtained for T = 100 which are available upon request.
As in the preceding subsection, we will begin by considering non mesokurtic

independent random sequences. Table 7 shows the frequency of detected changes
in the variances when the ICSS procedure is used with the three tests. The more
kurtosis the process has, the greater the number of time breaks erroneously
detected by the iterative procedure with the IT test. In contrast, few of them
are found with κ1 or κ2.

[insert Table 7 about here]

For conditional variance heteroskedastic sequences the picture is similar than
for the individual tests: the iterative method based on IT or κ1 tends to discover
too many changes in variance, as can be seen in Table 8. The procedure based
on κ2 has a good performance and hardly ever detects any spurious time break.
For IGARCH processes, as can be seen in Table 9, this last procedure also
outperforms the other two, finding few spurious changes in variance except for
small values of γ.

[insert Table 8 about here]
[insert Table 9 about here]

Finally, Table 10 shows the power of the ICSS procedure when there are
two changes in the unconditional variance of an independent sequence. The
procedure based on κ2 is slightly less powerful than the other two, although the
difference is not important.
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[insert Table 10 about here]

Thus, we may conclude that the procedures based on IT or κ1 show large
size distortions that invalidate their use in practice for financial time series,
which are leptokurtic and show persistence in the conditional variance. The
procedure based on κ2 is not affected by these distortions and attains a similar
power profile.

7 Empirical application
In this section we check for the constancy of the unconditional variance of the
four financial time series that have been already studied in Aggarwal et al.
(1999), who detected several changes in variance for these series. Data consist
of closing values for the stock indexes S&P500 (USA), Nikkei Average (Japan),
FT100 (UK) and Hang-Seng (Hong-Kong). The period covers from May 1985
to April 1995. We have calculated the weekly returns for Wednesdays. When
there was no trading on a given Wednesday, the trading day before Wednesday
was used to compute the return.
Table 11 presents the descriptive statistics for each of the series aforemen-

tioned. All the series show excess kurtosis. The Ljung-Box statistic on the
squared series and Engle’s Lagrange multiplier test (Engle,1982) for the ex-
istence of ARCH effects provide strong evidence of non-constant conditional
variance for the four series. Then, as concluded from the asymptotic theory as
well as from the Monte Carlo experiments, we may expect too many rejections
of the Inclan-Tiao test.

[insert Table 11 about here]

Table 12 presents the results obtained from using the ICSS algorithm. The
second column gives the points of structural changes in variance obtained by
Aggarwal et. al. (1999), whereas the rest of columns present those when the
iterative procedure is implemented using the response surfaces shown in Section
4. Comparing the four sets of time breaks detected, several conclusions arise.
First, comparing the second and the third column, less changes in variance
are detected when the critical values are adapted to the effective sample size.
Second, controlling for the kurtosis of the series dramatically reduces the number
of time breaks. In this case, only four changes are detected for the Nikkei
(instead of 6 with the IT test), one for the S&P index (instead of 8 or 2),
none for the FT100 (instead of 2 or 1) and Hang-Seng (instead of 6 or 5).
Finally, applying the ICSS(κ2) procedure no changes are observed. According
to our theoretical results, the Monte Carlo experiments as well as the descriptive
analysis, we can conclude that the detected changes obtained by Aggarwal et
al. (1999) and with the ICSS(IT ) method are spurious.

[insert Table 12 about here]
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8 Conclusions
In this article we have proven that the test used as a base for the implementation
of the ICSS of Inclan and Tiao (1994) has two serious drawbacks that invalidate
its use for financial time series. First, it neglects the fourth moment properties
of the process and, second, it does not allow for conditional heteroskedasticity.
The κ2 test we have proposed in this paper explicitly considers this two fea-
tures. Monte Carlo experiments detected extreme size distortions for the IT
test whereas κ2 is correctly sized in almost all the scenarios considered and it
turns out to be only slightly less powerful.
These theoretical findings lead us to recommend the use of the ICSS proce-

dure implemented with κ2 and to be skeptical about the results obtained with
the method based on the IT test. As an example of this, we have applied the
ICSS method using the three tests considered in this paper to four of the fi-
nancial time series analyzed in Aggarwal et al. (1999). These authors detected
several time breaks in their financial data. The descriptive statistics show that
these series are leptokurtic as well as conditionally heteroskedastic, the two situ-
ations where the IT test does not work properly. The ICSS procedure computed
using the suggested κ2 test does not detect any change in the unconditional vari-
ance. Hence, the time breaks detected by Aggarwal et al. (1999) are, given our
findings, spurious.
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9 Appendix: proof of the propositions
We shall make use of the following asymptotic result:

Lemma 5 Let {εt}∞t=0 be a sequence of random variables that satisfies assump-
tions A1. Define ξt ≡ ε2t − σ2. Then, for r ∈ [0, 1] : T−1/2ω−1/2P[rT ]

t=1 ξt ⇒
W (r) , a standard Brownian motion.

Proof. First, note that if {εt} is α−mixing, then also it is ξt. Next, the
set of assumptions A1 is a restricted case of the conditions of the Herrndorf’s
Theorem and, hence, the limit distribution stated in the previous lemma follows
directly from that Theorem.
Note that the assumptions on εt of Propositions 1 and 2 fulfil the set of

assumptions A1.
Proof. Propositions 1 and 2. This proof follows most of the steps of

Inclan-Tiao so that we will only sketch it. First, note that V (ξt) = E
¡
ε2t − σ2

¢2
=

η4 − σ4 ≡ ω, where η4 ≡ E
¡
ε4t
¢
. Only for mesokurtic random variables

V (ξt) = 2σ4. Moreover, T−1CT = T−1
PT

t=1 ε
2
t → σ2, where → stands for

convergence in probability, and

T−1/2ω−1/2
µ
Ck − k

T
CT

¶
= T−1/2ω−1/2

Ã
kX
t=1

ε2t −
k

T

TX
t=1

ε2t

!

= T−1/2ω−1/2
Ã

kX
t=1

¡
ε2t − σ2

¢− k

T

TX
t=1

¡
ε2t − σ2

¢!

= T−1/2ω−1/2
Ã

kX
t=1

ξt −
k

T

TX
t=1

ξt

!
⇒ W (r)− rW (1) ≡W ∗ (r)

where r ≡ k
T ∈ [0, 1]. Thus, T−1/2

¡
Ck − k

T CT

¢⇒ √ωW ∗ (r) ,
p
T/2Dk =

p
T/2

µ
Ck

CT
− k

T

¶
⇒
r

ω

2σ4
W ∗ (r) ,

and, applying the Continuous Mapping Theorem (CMT), Proposition 1 is proven.
Proposition 2 follows immediately from the previous one.
Proof. Proposition 3. In this situation, the ξi are no longer independent.

Then,

T−1/2ω−1/24

µ
Ck − k

T
CT

¶
= T−1/2ω−1/24

Ã
kX
t=1

ξt −
k

T

TX
t=1

ξt

!
⇒W ∗ (r) .

Provided that bω4 is a consistent estimator, T−1/2bω−1/24

¡
Ck − k

T CT

¢
= T−1/2Gk ⇒

W ∗ (r) and, applying the CMT, result c) is proven. Given that T−1/2
¡
Ck − k

T CT

¢⇒
14



ω
1/2
4 W ∗ (r) , it follows that

p
T/2Dk =

p
T/2

³
Ck
CT
− k

T

´
⇒ p

ω4
2σ4W

∗ (r) and

T−1/2Bk = T−1/2Ck−
k
T CT√bη4−bσ4 ⇒

q
ω4

η4−σ4W
∗ (r). Hence, applying the CMT, a)

and b) are proven.
We will consider the most simple case of IGARCH(1,1) processes, although

the generalization to any IGARCH(p,q) is straightforward. The following lemma
collects some intermediate results needed to proof Proposition 4.

Lemma 6 Let εt = ut
√
ht, where ut ∼ iidN(0, 1) and ht = δ + βht−1 + γε2t−1

with β + γ = 1, δ > 0, 0 ≤ β < 1 and 0 < γ < 1, conditional on h0 and

ε20. Assume also that E
£
ln
¡
β + γε2t

¢¤
< 0 and E

h¡
β + γε2t

¢p+λi
< 1 for 0 <

p < ψ/2 and λ > 0, which ensures the existence of the fourth moment -see
Nelson (1990) Theorem 4. Denote the long-run variance of vt ≡ wt − βwt−1

as ωv = limT→∞E

µ
T−1

³PT
t=1 vt

´2¶
< ∞, where wt ≡ ε2t − ht. Define

r ≡ k
T ∈ [0, 1] . Then:
L1) T−2Ck → δ

2r
2;

L2) T−3
PT

t=1 ε
4
t = T−2bη4 → δ2

3 .

Proof. We can write: ε2t = δ + (β + γ) ε2t−1 + wt − βwt−1 = δ + ε2t−1 + vt.
Then, vt is an invertible MA(1) process. Recursive substitution gives: ε2t =

ε20+δt+St, where St =
Pt

j=1 vj . Then, it is well-known that ω
−1/2
v T−1/2S[rT ] ⇒

W (r), r ∈ [0, 1] .
Let us now consider the cumulative sum of squares:

T−2Ck = T−2
kX
t=1

ε2t = T−2
kX
t=1

¡
ε20 + δt+ St

¢
=

k

T 2
ε20 +

1

T 2
δ

2
k (k + 1) + T−2

kX
t=1

St

=
δ

2

µ
k2

T 2
+

k

T 2

¶
+ op (1)

→ δ

2
r2

r ≡ k
T ∈ [0, 1] , when T → ∞, provided that

Pk
t=1 St ≈ Op

¡
k3/2

¢
. Then L1 is

proven.
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For result L2 note that, ε4t =
¡
ε20 + δt+ St

¢2
= ε40 + δ2t2 + S2t + 2ε

2
0δt +

2ε20St + 2δtSt. Then,

T−3
TX
t=1

ε4t = T−3
Ã
Tε40 + δ2

µ
1

3
T 3 +

1

2
T 2 +

1

6
T

¶
+

TX
t=1

S2t

+ε20δ
¡
T 2 + T

¢
+ 2ε20

TX
t=1

St + 2δ
TX
t=1

tSt

!

=
δ2

3
+ op (1)

→ δ2

3

provided that
PT

t=1 S
2
t ≈ Op

¡
T 2
¢
,
PT

t=1 tSt ≈ Op

¡
T 5/2

¢
and T−3ε20

PT
t=1 St ≈

op (1). Hence, T−2bη4 → δ2

3 and L2 is proven.
Proof. Proposition 4. From L1 it follows:

Dk =
T−2Ck

T−2CT
− k

T

→ r2 − r.

Thus,
p
T/2Dk ≈ Op

¡
T 1/2

¢
and it diverges. Hence, result a) is proven.

For result b) we have that T−2bσ4 → δ2

22 , from L1, and using L2:

T−1Bk =
T−2

¡
Ck − k

T CT

¢
T−1

qbη4 − bσ4 →
δ
2

¡
r2 − r

¢q
δ2

3 − δ2

22

= r (r − 1)
√
3

and then T−1/2Bk ≈ Op

¡
T 1/2

¢
, so that it diverges.

For result c) we have that

bω4 =
1

T

TX
t=1

¡
ε2t − T−1CT

¢2
+
2

T

mX
l=1

w (l,m)
TX

t=l+1

¡
ε2t − T−1CT

¢ ¡
ε2t−l − T−1CT

¢
= T−1

TX
t=1

ε4t − T−2C2T +

2
mX
l=1

w (l,m)

Ã
T−1

TX
t=l+1

ε2t ε
2
t−l − T−2CT

TX
t=l+1

ε2t − T−2CT

TX
t=l+1

ε2t−l + T−2C2T

!
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Hence, T−4C2k →
¡
δ
2r
2
¢2
, T−3

PT
t=1 ε

4
t → δ2

3 ,

T−3
TX

t=l+1

ε2t ε
2
t−l = T−3

TX
t=l+1

¡
ε20 + δt+ St

¢ ¡
ε20 + δ (t− l) + St−l

¢
= T−2ε40 + T−3δε20

µ
1

2
T 2 +

1

2
T − 1

2
l2 − 1

2
l

¶
+

T−3ε20
TX

t=l+1

St + T−3δε20

µ
1

2
T 2 +

1

2
T − lT − 1

2
l +

1

2
l2
¶
+

δ2
µ
−1
6
lT−3 +

1

3
+
1

2
T−1 +

1

6
T−2 +

1

6
l3T−3 − 1

2
lT−1 − 1

2
lT−2

¶
+

T−3δ
TX

t=l+1

(t− l)St + T−3ε20
TX

t=l+1

St−l + T−3δ
TX

t=l+1

tSt−l +

T−3
TX

t=l+1

StSt−l

=
δ2

3
+ op (1)

and T−2
PT

t=l+1 ε
2
t =

¡
T−l
T

¢2
(T − l)−2

PT
t=l+1 ε

2
t → δ

2 , provided that l/T → 0,

so that, T−4CT

PT
t=l+1 ε

2
t − T−4CT

PT
t=l+1 ε

2
t−l + T−4C2T →

¡
δ
2

¢2
. Thus, for

the Bartlett window, w (l,m) = 1− l/ (m+ 1), and

T−2bω4 =

Ã
δ2

3
−
µ
δ

2

¶2!
+ 2

mX
l=1

w (l,m)

Ã
δ2

3
−
µ
δ

2

¶2!
+ op (1)

=
mX

l=−m
w (l,m)

Ã
δ2

3
−
µ
δ

2

¶2!
+ op (1)

→ 1

12
(2m+ 1) δ2

so that,

m1/2T−1Gk =
¡
m−1T−2bω4¢−1/2µT−2Ck − k

T
T−2CT

¶
→ r (r − 1)

p
3/2.

Then, T−1/2Gk ≈ Op

³
(T/m)

1/2
´
.
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10 Tables
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Figure 1: Squared returns of Nikkei Index and detected changes in the
unconditional variance using the Inclan-Tiao test.

Table 1: Critical values for κ1 and κ2
κ1 κ2

α\T 100 200 500 1000 100 200 500 1000
0.9 1.148 1.167 1.195 1.200 1.170 1.177 1.192 1.197
0.95 1.268 1.300 1.328 1.330 1.269 1.294 1.317 1.329
0.975 1.383 1.420 1.453 1.447 1.352 1.395 1.428 1.442
0.99 1.515 1.547 1.592 1.592 1.448 1.508 1.557 1.586
Note: computed using 50,000 replications of εt ∼ iidN(0, 1), t =
1, ..., T .
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Table 2: Response surfaces for the 5% quantiles of the tests
IT κ1 κ2

p1 = 0
1.359167
(771.8)

1.363934
(846.1)

1.405828
(75.31)

p2 = −0.5 −0.737020
(−22.75871)

−0.942936
(−30.64)

−3.317278
(−4.24)

p3 = −1 −0.691556
(−6.03)

0.500405
(4.70)

31.22133
(3.68)

p4 = −2 −1672.206
(−5.66)

p5 = −3 52870.53
(8.92)

p6 = −4 −411015.0
(−9.64)

R2 0.996566 0.995914 0.998772bσv 0.003659 0.003492 0.013052
maxT |bvi,T | 0.01202 0.00847 0.04374

Note: q0.05i,T =
Pm

j=1 θ
0.05
i,pj T

pj + vi,T , where q0.05i,T is the 5%-quantile,
based on 50,000 replications, of test i = {IT, κ1, κ2} for a sample size T .
63 different sample sizes were considered. White’s heteroskedasticity-
consistent t-ratios between brackets. For the κ2 test we have used the
quadratic spectral window with automatic bandwidth selection (Newey-
West, 1994).

Table 3: Rejection frequencies for the tests. Non mesokurtic independent se-
quences

T = 100 T = 500
kurtosis IT κ1 κ2 IT κ1 κ2

Uniform -1.2 0.0003 0.0570 0.0583 0.0003 0.0500 0.0530
Normal 0 0.0570 0.0567 0.0517 0.0527 0.0503 0.0537
Logistic 1.2 0.1660 0.0497 0.0450 0.1857 0.0473 0.0467
Laplace 3 0.3243 0.0397 0.0423 0.3830 0.0450 0.0470

Exponential 6 0.4597 0.0280 0.0277 0.6360 0.0343 0.0370
Lognormal ≈110 0.8130 0.0240 0.0213 0.9700 0.0150 0.0153

Note: computed using 3,000 replications of εt ∼ iid, t = 1, ..., T .
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Table 4: Rejection frequencies for the tests. ARCH(1) processes
ARCH(1): δ = 0.1

T = 100 T = 500
γ IT κ1 κ2 IT κ1 κ2
0.1 0.083 0.083 0.036 0.105 0.095 0.054
0.3 0.256 0.172 0.039 0.346 0.203 0.040
0.5 0.489 0.296 0.035 0.692 0.338 0.044
0.7 0.643 0.359 0.036 0.902 0.426 0.033
0.9 0.765 0.393 0.024 0.963 0.480 0.022

Note: Computed using 1,000 replications of εt = ut
√
ht, where ut ∼

iidN(0, 1) and ht = δ + γε2t−1 and h0 = δ/(1− γ)).

Table 5: Rejection frequencies for the tests. IGARCH(1,1) processes
IGARCH(1,1)
Panel A: δ = 0.1

T = 100 T = 500
γ IT κ1 κ2 IT κ1 κ2
0.1 0.696 0.704 0.488 0.983 0.970 0.794
0.3 0.767 0.697 0.205 0.990 0.950 0.372
0.5 0.777 0.620 0.101 0.988 0.875 0.142
0.7 0.812 0.588 0.052 0.987 0.779 0.075
0.9 0.834 0.492 0.044 0.988 0.643 0.025

Panel B: δ = 0
0.1 0.583 0.614 0.427 0.998 0.998 0.958
0.3 0.979 0.963 0.578 1.000 1.000 0.838
0.5 1.000 0.971 0.336 1.000 0.991 0.378
0.7 1.000 0.933 0.150 1.000 0.939 0.143
0.9 1.000 0.799 0.060 1.000 0.782 0.039

Note: Computed using 1,000 replications of εt = ut
√
ht, where ut ∼

iidN(0, 1) and ht = δ + γε2t−1 + βht−1 with β + γ = 1 and starting
values h0 = 1 and ε0 = 0.

Table 6: Power of the test when there is a change in the variance
T = 100 T = 500

θ IT κ1 κ2 IT κ1 κ2
0.25 0.097 0.107 0.091 0.355 0.351 0.343
0.5 0.224 0.225 0.191 0.841 0.826 0.818
0.75 0.425 0.389 0.330 0.982 0.982 0.982
1 0.587 0.535 0.423 0.999 0.999 0.996
1.5 0.824 0.770 0.639 1.000 1.000 1.000

Note: Rejections of the null hypothesis. Computed using 1,000 repli-
cations of εt ∼ iidN(0, 1) for t = 1, ..., 0.5T and εt ∼ iidN(0, 1 + θ) for
t = 0.5T + 1, ..., T .
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Table 7: Rejection frequencies for the ICSS procedure. Non-mesokurtic inde-
pendent sequences

n0 n1 n2 n3 n4 n>4
ICSS(IT )

Uniform 1.000 0.000 0.000 0.000 0.000 0.000
Normal 0.949 0.047 0.004 0.000 0.000 0.000
Logistic 0.835 0.107 0.047 0.008 0.001 0.002
Laplace 0.604 0.186 0.122 0.058 0.025 0.005

Exponential 0.428 0.161 0.183 0.127 0.065 0.036
Lognormal 0.037 0.091 0.125 0.413 0.197 0.137

ICSS(κ1)
Uniform 0.958 0.036 0.006 0.000 0.000 0.000
Normal 0.946 0.047 0.007 0.000 0.000 0.000
Logistic 0.956 0.041 0.002 0.001 0.000 0.000
Laplace 0.955 0.043 0.002 0.000 0.000 0.000

Exponential 0.972 0.027 0.001 0.000 0.000 0.000
Lognormal 0.988 0.010 0.001 0.001 0.000 0.000

ICSS(κ2)
Uniform 0.958 0.037 0.005 0.000 0.000 0.000
Normal 0.942 0.056 0.002 0.000 0.000 0.000
Logistic 0.953 0.044 0.003 0.000 0.000 0.000
Laplace 0.949 0.049 0.002 0.000 0.000 0.000

Exponential 0.968 0.030 0.002 0.000 0.000 0.000
Lognormal 0.985 0.014 0.001 0.000 0.000 0.000

Note: ICSS(i), i = {IT, κ1, κ2} stands for the ICSS algorithm based on
the i test; nj , j = {0, 1, .., 4, > 4} stands for the relative frequency of
detecting j changes in variance. T = 500.
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Table 8: Rejection frequencies for the ICSS procedure. ARCH(1) processes
n0 n1 n2 n3 n4 n>4

γ ICSS(IT )
0.1 0.902 0.074 0.021 0.003 0.000 0.000
0.3 0.665 0.138 0.127 0.032 0.026 0.012
0.5 0.317 0.112 0.185 0.132 0.119 0.135
0.7 0.144 0.073 0.094 0.131 0.132 0.426
0.9 0.038 0.030 0.048 0.096 0.091 0.697

ICSS(κ1)
0.1 0.904 0.073 0.021 0.002 0.000 0.000
0.3 0.789 0.128 0.063 0.014 0.004 0.002
0.5 0.677 0.154 0.104 0.042 0.017 0.006
0.7 0.583 0.148 0.129 0.065 0.047 0.028
0.9 0.464 0.145 0.197 0.078 0.066 0.050

ICSS(κ2)
0.1 0.952 0.039 0.009 0.000 0.000 0.000
0.3 0.944 0.050 0.005 0.001 0.000 0.000
0.5 0.969 0.030 0.001 0.000 0.000 0.000
0.7 0.976 0.024 0.000 0.000 0.000 0.000
0.9 0.972 0.025 0.003 0.000 0.000 0.000

Note: See Table 7.

Table 9: Rejection frequencies for the ICSS procedure. IGARCH(1,1) processes

n0 n1 n2 n3 n4 n>4
γ ICSS(ITT )
0.1 0.022 0.085 0.159 0.239 0.235 0.260
0.3 0.014 0.010 0.039 0.065 0.095 0.777
0.5 0.010 0.006 0.027 0.041 0.060 0.856
0.7 0.012 0.010 0.033 0.058 0.057 0.830
0.9 0.013 0.013 0.032 0.054 0.064 0.824

ICSS(κ1)
0.1 0.035 0.103 0.148 0.202 0.229 0.283
0.3 0.050 0.053 0.081 0.104 0.152 0.560
0.5 0.129 0.066 0.128 0.120 0.116 0.441
0.7 0.230 0.126 0.132 0.121 0.130 0.261
0.9 0.371 0.117 0.199 0.103 0.099 0.111

ICSS(κ2)
0.1 0.229 0.271 0.219 0.159 0.088 0.034
0.3 0.625 0.206 0.119 0.042 0.007 0.001
0.5 0.858 0.100 0.035 0.006 0.001 0.000
0.7 0.925 0.062 0.013 0.000 0.000 0.000
0.9 0.964 0.035 0.001 0.000 0.000 0.000

Note: See Table 7.
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Table 10: Power of the ICSS procedure when there is a change in the variance
DGP 1 DGP 2

θ IT κ1 κ2 IT κ1 κ2
0.25 0.173 0.171 0.134 0.222 0.213 0.154
0.5 0.691 0.631 0.511 1.382 1.175 0.688
0.75 1.399 1.314 1.061 2.026 1.975 1.312
1 1.860 1.794 1.534 2.112 2.125 1.715
1.5 2.115 2.094 1.973 2.161 2.164 1.864

Note: Average number of breaks detected. Computed using 1,000 repli-
cations of DGP 1: εt ∼ iidN(0, 1) for t = 1, ..., 200, εt ∼ iidN(0, 1+ θ)

for t = 201, ..., 400, and εt ∼ iidN(0, 1) for t = 401, ..., 500; DGP 2:
εt ∼ iidN(0, 1) for t = 1, ..., 200, εt ∼ iidN(0, 1+θ) for t = 201, ..., 400,
and εt ∼ iidN(0, (1 + θ)−1) for t = 401, ..., 500.

Table 11: Descriptive statistics
FT100 Nikkei S&P Hang-Seng

Mean 0.00135 0.000169 0.002026 0.003259
Min -0.17817 -0.10892 -0.16663 -0.34969
Max 0.09822 0.12139 0.06505 0.11046

std. dev. 0.02275 0.02940 0.02084 0.03765
Skewness -1.54899 -0.51655 -1.45512 -2.31416
Kurtosis 15.8642 4.78076 12.3227 19.6888

Q2(15)
88.278
(0.00)

130.93
(0.00)

87.015
(0.00)

38.06
(0.00)

LM(2)
103.69
(0.00)

34.29
(0.009)

65.09
(0.00)

32.577
(0.00)

LM(5)
106.77
(0.00)

62.66
(0.00)

65.51
(0.00)

34.02
(0.00)

Note: Q2(15) stands for the Ljung-Box statistic on the squared of the
series for 15 lags and LM(j) for Engle’s Lagrange multiplier test for
ARCH(j) effects. p-values between brackets.
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Table 12: Detected changes in variance with the ICSS algorithm
AIL ICSS(IT ) ICSS(κ1) ICSS(κ2)

FT100 14-10-87 (80)
23-12-87 (90)

Nikkei 17-6-87 (63) 14-10-87 (80) 14-10-87 (80)
18-11-87 (85) 25-11-87(86) 25-11-87(86)
14-2-90 (199) 14-2-90(199) 14-2-90(199)
23-01-91 (247) 9-1-91(245) 9-1-91(245)
25-3-92 (307) 25-3-92(307) 25-3-92(307)
30-9-92 (334) 30-9-92(334) 30-9-92(334)

S&P 21-5-86(55) 21-5-86(55) 21-5-86(55)
7-10-87(127) 7-10-87(127)
4-11-87 (131) 4-11-87 (131)
10-8-88(171) 1-06-88(161)
1-8-90(274) 1-8-90(274)
13-2-91(302) 13-2-91(302)
22-4-92(364) 15-4-92 (363) 22-4-92(364)

Hang-Seng 14-10-87(128) 14-10-87(128)
4-11-87(131) 4-11-87(131)
2-3-88(148) 17-2-88(146)
17-5-89(211) 17-5-89(211)
12-7-89(219) 12-7-89(219)
7-10-92(388) 7-10-92(388)

Note: Dates of the detected changes in variance (position of the obser-
vation between brackets). AIL stands for the results of Aggarwal et al.
(1999). ICSS(i), i = {IT, κ1, κ2} stands for the ICSS algorithm based
on the i test.
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