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Abstract

The detection of additive outliers in integrated variables has attracted
some attention recently, see e.g. Shin et al. (1996), Vogelsang (1999) and
Perron and Rodriguez (2003). This paper serves several purposes. We
prove the inconsistency of the test proposed by Vogelsang, we extend the
tests proposed by Shin et al. and Perron and Rodriguez to the seasonal
case, and we consider alternative ways of computing their tests. We also
study the effects of periodically varying variances on the previous tests
and demonstrate that these can be seriously size distorted. Subsequently,
some new tests that allow for periodic heteroskedasticity are proposed.
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1 Introduction
Franses and Haldrup (1994), and Shin et al. (1996), for non-seasonal time series,
and Haldrup et al. (2004), for seasonal data, have shown that the presence of
additive outliers (AO) affects the limiting distribution of Dickey-Fuller type
tests which tend to overreject the null in this case. The intuition behind these
results is that the AOs introduce an MA-type autocorrelation component which
distorts the size of the tests. As a consequence, it is necessary to check for the
presence of outliers prior to testing for unit roots. With respect to the first
step, i.e. the testing for the presence of outliers in I(1) variables, Shin et al.
(1996) (SSL hereafter), Vogelsang (1999) and Perron and Rodriguez (2003),
(PR hereafter), have proposed some new tests. Concerning the second aspect,
i.e. the correction for the outliers when testing for unit roots, this has been
considered by Franses and Haldrup (1994), Haldrup et al. (2004), Shin et al.
(1996) and Vogelsang (1999). One of the suggestions of the last author is to use
modified Phillips-Perron (1988) tests. Franses and Haldrup proposed to extend
the auxiliary regression by including dummy variables to control for the AOs.
whilst Shin et al. suggested to consider the observation affected by AOs as a
missing observation and replace this by its expected value under the hypothesis
of a unit root.
In this paper we first review the tests proposed by Vogelsang, Perron and

Rodriguez, and Shin et al. We prove the inconsistency of the test proposed
by the first author. Perron and Rodriguez (2003) have already shown that the
iterative procedure based on this test is inconsistent, however, we demonstrate
that the test itself is not consistent. Some simulation experiments show the
poor performance that exists even in finite samples. Next, we extend the tests
proposed by PR and SSL in several ways: we adapt the tests to the seasonal
case and we consider different ways of computing the tests. By Monte Carlo
experiments the performance of these alternative tests is studied.
Next, we study the effects of periodically varying variances on the PR and

SSL tests. This feature of the seasonal integrated processes has been pointed out,
by among others, Burridge and Wallis (1990), Burridge and Taylor (2001) and
Franses (1996). We show that the tests for the detection of AOs in (seasonally)
integrated processes have serious size distortions if the periodic heteroscedastic-
ity is not taken into account, and hence we suggest some simple modifications
of the tests that are robust to this feature.

2 Testing for additive outliers in integrated time
series

Consider the univariate process generated by

yt = yt−s + ut, (1)

where ut is an I(0) process and s indicates the number of observations per year.
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The observed variable is
zt = µt + yt + θδt (2)

where µt collects the deterministic terms and δt is a Bernouilli-type variable
independent of ut, such that P (δt = 1) = P (δt = −1) = p/2, P (δt = 0) = 1−p,
0 ≤ p < 0.5. Accordingly, zt is an integrated process subject to AOs. In the
following we will consider some simple procedures to detect outliers in integrated
processes.

2.1 The Vogelsang test

The test proposed by Vogelsang (1999) is based on estimating by OLS the
sequence of (spurious) regressions

zt = F (t/T )0bβ + bθD(Tao)t + but (3)

for any Tao = 1, 2, ..., T, where F (t/T ) is a vector of deterministic terms such as
time trends and seasonal dummy variables. D(Tao)t is a dummy variable that
takes value 1 for t = Tao and 0 otherwise. The test statistic is given by τ =
supTao

¯̄
tbθ (Tao)¯̄ and the null hypothesis of θ = 0 is rejected if τ is greater than

a given critical value. Under the null hypothesis of θ = 0 and the assumption
that λ = Tao/T remains fixed as T grows, the asymptotic distribution of the
test is given by (see Vogelsang, 1999):

τ ⇒ sup
λ

¯̄̄̄
¯̄̄ W ∗ (λ)³R 1

0
W ∗(r)2dr

´1/2
¯̄̄̄
¯̄̄ (4)

where ⇒ denotes weak convergence of the associated probability measures and
W ∗(r) are the residuals from the projection ofW (r), a standard Wiener process,
onto the space spanned by F (r) on (0,1). This asymptotic distribution is free
of nuisance parameters and is invariant to the autocorrelation structure of ut.
The next proposition establishes the asymptotic distribution of the test under
the alternative hypothesis. The proof is shown in the Appendix.

Proposition 1 Under the alternative hypothesis of θ 6= 0, the asymptotic dis-
tribution of τ is given by (4).

Thus, the test statistic has the same asymptotic distribution both under the
null and under the alternative and the power will equal the size even asymp-
totically; hence the test proposed by Vogelsang (1999) is inconsistent1. One
intuition behind this result is that the presence of additive outliers introduces
a MA component in I(1) processes, see e.g. Franses and Haldrup (1994), how-
ever, the asymptotic distribution of the test, given by (4), is invariant to serial

1Of course, the test will be consistent against a sequence of alternatives where the size of
the outliers are allowed to increase with the sample size of a given speed. However, in practice
we believe this class of models is of little interest.
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correlation. Another intuition behind the proposition is that an additive outlier
will become negligible compared to the I(1) stochastic trend component as the
sample size tends to infinity2.
Some Monte Carlo experiments confirm these findings. Table 1 shows the

detection frequencies of the test when there is a fixed outlier in the middle of
the sample of a random walk. Four sample sizes, T = {50, 100, 200, 400}, and
values of θ = {0, 5, 10, 15} are considered. When θ = 0, no outliers are present
and around 96% of the times the test gets the correct conclusion of absence of
outliers using Vogelsangs critical values. For θ > 0, the test only detects the
outlier for large values of θ and small sample sizes (say 50). When the sample
size grows the performance of the test quickly deteriorates because the influence
of the outlier is hidden in the total variation of the variable.

[insert table 1 about here]

Systematic AOs are considered in table 2. Four different probabilities of
outliers, p = {0.01, 0.025, 0.05, 0.1}, two sample sizes, T = {100, 400}, and
values of θ = {5, 15} are considered. The results of the experiments confirm
that the test only detects a small amount of the effective number of outliers.
Only for large magnitudes of the outlier (say, θ = 15) the total number of
detected outliers almost corresponds to the actual number of AOs. As well as
for fixed outliers, the sample size deteriorates the ratio between detected outliers
and effective outliers.

[insert table 2 about here]

Hence, we conclude that the test proposed by Vogelsang (1999) is generally
inadequate for the detection of outliers.

2.2 The Shin et al. test

Here we extend to seasonal data the outlier detection test suggested by Shin et
al. (1996). The test, which is the uniformly most powerful unbiased test for
θ = 0, is given by,

τSSL∆z = sup
Tao

¯̄
tSSL∆z (Tao)

¯̄
where,

tSSL∆z (Tao) =
∆zTao+1 −∆zTao√

2bσ
for Tao ∈ {2, ..., T − 1}, bσ2 = (T − 3)−1 h³PT

t=2∆z
2
t

´
−∆z2t0 −∆z2t0+1

i
, ∆zt =

zt−zt−1 and t0 is the time point at whichmax {|dt| : |dt| > max {|∆zt| , |∆zt+1|}}
and dt = 2

−1/2 (∆zt+1 −∆zt).
2One way of making the test asymptotically consistent is by letting the magnitude of the

outlier grow with the sample size T in a particular way. One might question, however, whether
this is a satisfactory way of solving the inconsistency problem.
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The test can be easily extended to seasonal data, in which case special at-
tention must be taken with respect to the outliers located at the beginning
and at the end of the sample. This amounts to 2s observations and for the
usual sample sizes used in economics, this could be an important fraction
of the available information. Let us suppose that a single outlier is located
at Tao ≤ s, in which situation all the information about θ is contained in
∆szTao+s = yTao+s−yTao−θ = uTao+s−θ. If the outlier is not located in the tails
of the sample, all the information about θ is contained in ∆szTao+s = uTao+s−θ
and ∆szTao = uTao + θ, whereas if Tao > T − s all the information is contained
in ∆szTao = uTao + θ. Hence, under the assumption that ut ∼ iid N

¡
0, σ2u

¢
and

θ 6= 0,  ∆szTao+s ∼ iid N
¡−θ, σ2u¢ for Tao ≤ s

∆szTao+s −∆szTao ∼ iid N
¡−2θ, 2σ2u¢ for s < Tao ≤ T − s

∆szTao ∼ iid N
¡
θ, σ2u

¢
for Tao > T − s

and, thus, the test statistic for seasonal data is given by

τSSL∆sz = sup
Tao

¯̄
tSSL∆sz (Tao)

¯̄
(5)

where

tSSL∆sz (Tao) =


bσ−1∆szTao+s for Tao ≤ s

2−1/2bσ−1 (∆szTao+s −∆szTao) for s < Tao ≤ T − sbσ−1∆szTao for Tao > T − s

With respect to the deterministic terms, these can be dealt with by prior regres-
sion of ∆szt on the deterministic terms and proceeding the analysis by using
the residuals. The robust variance can be computed as

bσ2 =

(T − s− 1− k)

−1 h³PT
t=s+1∆sz

2
t

´
−∆sz

2
Tao+s

i
for Tao ≤ s

(T − s− 2− k)
−1 h³PT

t=s+1∆sz
2
t

´
−∆sz

2
Tao
−∆sz

2
Tao+s

i
for s < Tao ≤ T − s

(T − s− 1− k)−1
h³PT

t=s+1∆sz
2
t

´
−∆sz

2
Tao

i
for Tao > T − s

(6)
where k is the number of deterministic regressors. Other robust estimators of
the variance can be used, such as the median absolute deviation (MAD) and
the trimmed standard deviation.
Once an outlier is detected, Shin et al. suggest to treat this as a missing

observation and replace it with its forecast under the null hypothesis of a random
walk. That is, suppose that an AO was found at Tao, then the contaminated
observation zTao has to be replaced by: bzTao = E (zTao | zTao−1, zTao−2, ...) =
zTao−s. Then, the new series with the corrected observation must be checked
for the presence of new outliers and the corresponding observations replaced by
its forecast. The iterative procedure stops when no additional outlier is found.
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2.3 The PR test

The PR test (Perron and Rodriguez, 2003) is based on the auxiliary regression:

∆zt = θ
£
D (Tao)t −D (Tao)t−1

¤
+ vt (7)

where D (Tao)t−j = 1 when t = Tao+ j and 0 otherwise, so that, under the null
hypothesis of θ = 0

bθ (Tao) =

½
1
2 (∆zTao −∆zTao+1) Tao ≤ T − 1
∆zTao Tao = T

=

½
1
2 (uTao − uTao+1) Tao ≤ T − 1
uTao Tao = T

.

Perron and Rodriguez (2003) propose to estimate the variance of bθ as: var hbθ (Tao)i
PR

=

1
2

³ bR (0)− bR (1)´ where bR (j) = T−1
PT

t=s+j+1 bvtbvt−j and bvt are the OLS resid-
uals from (7). Defining tPR (Tao) =

√
2bθ (Tao)³ bR (0)− bR (1)´−1/2, the test

statistic reads
τPR = sup

Tao

¯̄
tPR (Tao)

¯̄
(8)

Note however, that for Tao = T the t-statistic to be computed should be
tPR (Tao) = bδ (Tao) bR (0)−1/2 .
The PR test can be easily extended to the seasonal case by considering the

auxiliary regression

∆szt =

½ −θD (Tao)t−s + vt Tao ≤ s
θ
£
D (Tao)t −D (Tao)t−s

¤
+ vt Tao > s

(9)

in which case,

bθ (Tao) =
 −uTao+s Tao ≤ s

1
2 (uTao − uTao+s) s < Tao ≤ T − s
uTao Tao > T − s

,

and,

var
hbθ (Tao)i =


bR (0) Tao ≤ s
1
2

³ bR (0)− bR (s)´ s < Tao ≤ T − sbR (0) Tao > T − s

.

In a similar way,

tPRs (Tao) =


bθ (Tao) bR (0)−1/2 Tao ≤ s
√
2bθ (Tao)³ bR (0)− bR (s)´−1/2 s < Tao ≤ T − sbθ (Tao) bR (0)−1/2 Tao > T − s
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and the test statistic is given by

τPRs = sup
Tao

¯̄
tPRs (Tao)

¯̄
. (10)

If one outlier is located in the initial observations, Tao ≤ s, then ∆szTao+s =
uTao+s − θ. On the contrary, if the outlier lies in s < T 0ao ≤ 2s, then ∆szT 0ao =
uT 0ao + θ and ∆szT 0ao+s = uT 0ao+s − θ. Thus, one way to determine whether an
outlier in the initial observations lies in Tao ≤ s or in Tao + s could be to com-

pare
¯̄
tPRs (Tao + s)

¯̄
=

¯̄̄̄√
2bθ (Tao + s)

³ bR (0)− bR (s)´−1/2 ¯̄̄̄ with ¯̄tPRs (Tao)
¯̄
=¯̄̄bθ (Tao) bR (0)−1/2 ¯̄̄. If ¯̄tPRs (Tao)

¯̄
>
¯̄
tPRs (Tao + s)

¯̄
the possible outlier lies in

Tao ≤ s or in Tao + s otherwise.
Concerning the deterministic terms, let us consider the auxiliary regression

∆szt = F (t/T ) + θ
£
D (Tao)t −D (Tao)t−s

¤
+ vt

where F (t/T ) is a vector of deterministic terms such as a constant, a trend, and
seasonal dummy variables. OLS estimation of this equation is equivalent to

∆sz
∗
t = θ

£
D (Tao)t −D (Tao)t−s

¤∗
+ vt

where ∆sz
∗
t and

£
D (Tao)t −D (Tao)t−s

¤∗
are the residuals from the regression

of ∆szt and
£
D (Tao)t −D (Tao)t−s

¤
on F (t/T ) , respectively. But note that

for F (t/T ) being a constant or F (t/T ) =
Ps

q=1Dqt being seasonal dummy

variables, we have that, if Tao > s, it holds that:
£
D (Tao)t −D (Tao)t−s

¤∗
=£

D (Tao)t −D (Tao)t−s
¤
. Then, we can use the auxiliary regression

∆sz
∗
t = θ

£
D (Tao)t −D (Tao)t−s

¤
+ vt

that is, to use the demeaned variable. Given that under our assumption ∆szt
is stationary, demeaning will not affect the critical values. Hence, it is enough
to compute the critical values for the most simple regression.
Once an outlier has been detected, Perron and Rodriguez (2003) suggest to

drop the corresponding observation. With seasonal data, this procedure cannot
be followed given that it will distort the seasonal autocorrelation structure of the
data. For instance, eliminating one observation in one quarter will mean that
the corresponding year will have only three quarters. Hence, we suggest to follow
the procedure suggested by Shin et al. (1996) and substitute the observation of
the outlier by its forecast under the hypothesis of a seasonal random walk with
deterministic components.
We have simulated the critical values associated with the test (10). It occurs

that the fractiles are practically identical to those of Perron and Rodriquez
(2003) where it is the total number of observations that matter for the relevant
distribution. These findings apply regardless of the deterministics that have
been conditioned upon in the construction of the test.
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2.4 Monte Carlo Experiments

In this subsection we study the finite sample performance of the above tests
for detecting outliers in seasonal data, i.e. τPRs , and τSSL∆sz

. The Monte Carlo
experiments are similar to those of Perron and Rodriguez (2003). The DGP is
given by:

zt =
mX
j=1

δjD (Tao,j)t + yt

¡
1− L4

¢d
yt = vt

vt = ρvt−4 + εt + θεt−4
εt ∼ iidN (0, 1)

In all experiments 3000 replications were used and m = 4. Tables 3 to 6
show the size and power of the tests. To save space, for the SSL test only the
results computing the variance with (6) are shown. Qualitatively similar results
were obtained using the median absolute deviation and the trimmed standard
deviation estimators.
The τSSL∆sz

test has serious size problems for autocorrelated errors and for
stationary processes. Moreover, the τSSL∆sz

test seems the most powerful test
but it outperforms the τPRs test for the cases where its size distortion is bigger
and in terms of size-adjusted powers the test seems less attractive. Overall,
the τPRs test seems to be the best test as it has the correct size in all the
cases as well as good power. The rejection frequencies for the τPRs test are
almost identical to the ones reported by Perron and Rodriguez (2003) in their
simulation experiments for the non-seasonal case.

3 Periodic heteroscedasticity
Let us suppose that the process is a seasonal random walk with periodic het-
eroscedasticity: yt = yt−s + ut, with ut ∼ iid(0, σ2[(t−1)/s]s), where [·] is the
operator taking the integer part of its argument. That is, each season fol-
lows a random walk with different variance in the innovations. This process has
been considered by Burridge and Wallis (1990), Burridge and Taylor (2001) and
Franses (1996) among others. In this context a representation of the process
could be obtained by working with the annual process

Yn = Yn−1 + Un

where n = [t/s] + 1, Yn =
¡
y(n−1)s+1, y(n−1)s+2, ..., y(n−1)s+s−1

¢0
,

Un =
¡
u(n−1)s+1, u(n−1)s+2, ..., u(n−1)s+s−1

¢0
and E

¡
UjU

0
j

¢
= diag

©
σ2q
ª
, q =

{1, 2, ..., s}, j = 1, ..., [T/s] .
Table 7, Panel A shows the rejection frequencies of the Perron-Rodriguez test

(8) when there is periodic heteroscedasticity. This DGP was also considered in
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Burridge and Taylor (2001). As it is observed, the periodic variances introduce
a significant size distortion of the test. To avoid this poor performance, the PR
test statistics could be modified according the periodic nature of the variances.
Hence, we can define the statistic:

τPRPH = sup
Tao

¯̄
tPRPH (Tao)

¯̄
(11)

where

tPRPH (Tao) =


bθ (Tao) bRq (0)

−1/2 Tao ≤ s
√
2bθ (Tao)³ bRq (0)− bRq (1)

´−1/2
s < Tao ≤ T − sbθ (Tao) bRq (0)

−1/2
Tao > T − s

,

q = t−[(t− 1) /s]×s is the season, bRq (j) = [T/s]
−1P[T/s]

n=j+1 bv(n−1)s+qbv(n−1−j)s+q,
and bθ (Tao) is the OLS estimate of θ in (7). That is, the variance and autoco-
variances are estimated using only the observations corresponding to the same
season where the (possible) additive outlier is located.
Another strategy could be to pretest for periodic variances and, if periodicity

is detected, then compute τPRPH , otherwise, compute τPRs . Let us denote as
τPRP−PH the supremum statistic computed with this procedure.
Table 7 Panel B shows that τPRPH and τ

PR
P−PH have good size when the process

is a random walk with periodic variances. Tables 8 to 11 show the size and
power of these two tests for non-heteroscedastic processes. These results can be
compared with those of Tables 3 to 6. It seems that the new tests perform almost
equally compared to τPRs for these DGPs. Hence, we strongly recommend to
use the tests that are robust to periodic heteroscedasticity.

4 Empirical applications
In order to illustrate the performance of the procedures for outlier detection,
we have applied the tests to the analysis of US money demand. To that end,
we have selected the most liquid definition of money demand, considering both
the currency component of the US money stock, measured by M1, as well as the
currency in circulation in the US economy. We will refer to these as CCM1 and
CC, respectively. The variables have been made real by using the US consumer
price index as deflator. The monthly data covers the period 1947:1-2004:2 and
the data are from the Board of Governors of the Federal Reserve System (see
http://www.forecasts.org/data ).
Figures 1-3 display the variables and their first regular and first seasonal

differences, respectively. These figures show that the variables exhibit similar
behavior. Also, the series do not seem stationary, they exhibit a clear seasonal
component and finally, they take values abnormally high in some periods. More
precisely, we can relate these abnormal behaviour to the end of 1999 and the
first half of 2001 episodes. Thus, it will be interestsing to see whether we can
identify these as being outliers using the various tests.
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Table 12 reports the values of the τPRPH , τ
PR
s and τSSL∆sz

tests. Formal F-tests
for non-periodic heteroscedasticity could not be rejected and hence the results
for τPRPH and τPRs are expected to be similar. For the currency component of
the US money stock, CCM1, it can be seen that the τPRPH and τPRs tests implies
the presence of 4 additive outliers (identically dated) whereas the τSSL∆sz

test
identifies one less outlier. Two of the outliers are clearly associated with the
Y2K-effect: December 1999, and January 2000.
The results of the currency in circulation, CC, are rather similar, although

slight modifications exist. First, we observe that the τPRPH statistic detects the
existence of 6 outliers, the τPRs tests identifies 5 outliers whilst τSSL∆sz

detects 4
outliers. The tests generally agree about the four outliers from November 1999
through January 2000, i.e. an "extended" Y2K phenomenon. In fact, the τPRPH
test suggests the outlier episode to start in October 1999. The February 2002
outlier is common to all tests (as for CCM1) as are the June 2001 observation
associated with the τPRPH and τPRs tests.

5 Conclusions
In this paper we have considered three exisiting tests for the detection of ad-
ditive outliers in integrated processes and have extended these in several ways.
First, we have shown that the test proposed by Vogelsang (1999) is inconsistent.
Second, we have extended the procedures suggested by Shin et al. (1996) and
Perron and Rodriguez (2003) to the seasonal case. Monte Carlo experiments
have shown that the latter test outperforms the former in terms of size, which is
almost equal to the nominal one in all the (homoscedastic) scenarios considered.
Third, it has been reported that the presence of periodic heteroscedasticity in-
troduces a size distortion in the previous tests. Consequently, two new tests
that consider this feature are proposed and simulation experiments have shown
their good performance in terms of both power and size.
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6 Appendix
Proof. Proposition 1: From the expressions (1) and (2), define St =

P
j uj and

µt = F (t/T )0β, then the data-generation process under the alternative of θ 6= 0
is given by zt = µt + (St + θδt) = µt + Sηt, whereas under the null Sηt = St.
Let D∗(Tao)t and S∗ηt denote the residuals from the regression of D(Tao)t and
zt respectively on F (t/T ). The t-ratio testing θ = 0 can be written as (see
Vogelsang, 1999, Appendix page 251):

tbθ(Tao) = T−1/2S∗ηTao¡
T−2

P
S∗2ηt + op (1)

¢1/2
Note that the presence of AOs does not modify neither the long-run vari-
ance of ∆yt : σ2 = limT→∞E

¡
T−1S2ηT

¢
= limT→∞E

³
T−1 (ST + θδT )

2
´
=

limT→∞E
¡
T−1S2T

¢
, nor the asymptotic limits of the numerator and the de-

nominator: T−1/2S∗η[rT ] ⇒ σW ∗(r) and T−2
PT

[rT ]=1 S
∗2
η[rT ] ⇒ σ2

R 1
0
W ∗(r)2dr

in both cases, for θ = 0 and for θ 6= 0. Hence, the test has the same limit under
the null and the alternative hypothesis and therefore is inconsistent.
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Table 1: Detection frequencies for the Vogelsang τ statistic for a fixed outlier.
θ T nao = 0 nao = 1 nao > 1
0 50 0.971 0.012 (0) 0.017 (0)

100 0.955 0.027 (0) 0.018 (0)
200 0.962 0.018 (0) 0.020 (0)
400 0.964 0.011 (0) 0.025 (0)

5 50 0.781 0.202 (0.196) 0.017 (0.012)
100 0.878 0.100 (0.085) 0.022 (0.010)
200 0.948 0.031 (0.019) 0.021 (0.001)
400 0.961 0.014 (0.003) 0.025 (0.001)

10 50 0.299 0.672 (0.671) 0.029 (0.029)
100 0.580 0.380 (0.378) 0.040 (0.040)
200 0.791 0.179 (0.176) 0.030 (0.017)
400 0.900 0.073 (0.065) 0.027 (0.010)

15 50 0.080 0.890 (0.890) 0.030 (0.030)
100 0.261 0.696 (0.696) 0.043 (0.043)
200 0.490 0.478 (0.477) 0.032 (0.029)
400 0.732 0.240 (0.232) 0.028 (0.019)

Notes: The data-generating process is given by zt = yt + D(0.5T )t,
t = 1, 2, ...T , where ∆yt = εt, εt ∼ N(0, 1). The auxiliary regression is
given by: yt = µ+θ̂D(Tao)t+ût. 1000 replications and 10% significance
level were used. nao stands for the number of outliers detected. The
numbers in parenthesis are the frequencies of a correctly detected outlier
in the middle of the sample.
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Table 2: Detection frequencies for the Vogelsang τ statistic for systematic out-
liers.

p θ T Nao nao
0 100 0 0.024 (0)

400 0 0.235 (0)
0.01 5 100 1.023 0.142 (0.074)

400 4.070 0.273 (0.038)
15 100 1.023 0.832 (0.756)

400 4.070 1.238 (1.047)
0.025 5 100 2.509 0.245 (0.184)

400 9.959 0.285 (0.079)
15 100 2.509 1.855 (1.794)

400 9.959 2.519 (2.398)
0.05 5 100 5.074 0.338 (0.299)

400 20.113 0.341 (0.163)
15 100 5.074 3.093 (3.073)

400 20.113 4.265 (4.147)
0.1 5 100 9.974 0.394 (0.367)

400 40.029 0.352 (0.205)
15 100 9.974 3.343 (3.333)

400 40.029 4.585 (4.528)
Notes: The data-generating process is given by zt = yt + θδt, t =
1, 2, ...T , where ∆yt = εt, εt ∼ N(0, 1) and δt is an independent se-
quence of Bernouilli variables with P (δt = 1) = P (δt = −1) = p/2.
The auxiliary regression is given by: yt = µ + θ̂D(Tao)t + ût. 1000
replications and a 10% significance level were used. N̄ao stands for
the (average) number of outliers in the samples and n̄ao for the (aver-
age) number of outliers detected. The numbers in parenthesis are the
frequencies of correctly detected outliers.
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Table 3: Size of the PR test for non-stationary processes
PANEL A: d = 1; δj = 0 ∀ j; ρ = 0

τPRs τSSL∆sz

θ n1 n2 n3 n4 n>4 n1 n2 n3 n4 n>4
−0.8 0.047 0.002 0.000 0.000 0.000 0.299 0.064 0.011 0.000 0.000
−0.4 0.050 0.004 0.000 0.000 0.000 0.201 0.027 0.003 0.000 0.000
0 0.054 0.003 0.000 0.000 0.000 0.053 0.003 0.001 0.000 0.000
0.4 0.035 0.003 0.001 0.000 0.000 0.009 0.000 0.000 0.000 0.000
0.8 0.020 0.004 0.001 0.001 0.001 0.005 0.000 0.000 0.000 0.000
ρ PANEL B: d = 1; δj = 0 ∀ j; θ = 0
−0.8 0.031 0.004 0.000 0.000 0.000 0.383 0.141 0.052 0.020 0.007
−0.4 0.058 0.002 0.000 0.000 0.000 0.230 0.041 0.006 0.001 0.000
0.4 0.030 0.004 0.001 0.001 0.001 0.003 0.000 0.000 0.000 0.000
0.8 0.031 0.010 0.009 0.009 0.008 0.000 0.000 0.000 0.000 0.000

Notes: DGP: zt =
Pm

j=1 δjD(Tao,j)t + yt, (1 − L4)dyt = vt, vt =
ρvt−4 + εt + θεt−4, εt ∼ iidN(0, 1). 3.000 replications. T = 120. 5%
critical values. ni stands for the frequency of detecting the i−th outlier.

Table 4: Size of the PR test for stationary processes
d = 0; δj = 0 ∀ j; θ = 0

τPRs τSSL∆sz

ρ n1 n2 n3 n4 n>4 n1 n2 n3 n4 n>4
0.9 0.053 0.003 0.000 0.000 0.000 0.056 0.003 0.000 0.000 0.000
0.7 0.051 0.002 0.000 0.000 0.000 0.092 0.005 0.001 0.000 0.000
0.5 0.056 0.002 0.000 0.000 0.000 0.144 0.016 0.001 0.000 0.000
0.3 0.055 0.001 0.000 0.000 0.000 0.206 0.034 0.005 0.000 0.000
0 0.053 0.002 0.000 0.000 0.000 0.308 0.074 0.018 0.004 0.001

Note: See table 3
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Table 5: Power of the PR test for non-stationary processes
PANEL A: d = 1; δj = {5, 3, 2, 2} for Tao = {30, 55, 77, 100}; ρ = 0

τPRs τSSL∆sz

θ n1 n2 n3 n4 n>4 n1 n2 n3 n4 n>4
−0.8 0.766 0.191 0.026 0.002 0.000 0.945 0.556 0.204 0.059 0.011
−0.4 0.945 0.410 0.077 0.006 0.000 0.993 0.700 0.268 0.078 0.015
0 0.998 0.679 0.219 0.043 0.003 0.998 0.755 0.278 0.045 0.004
0.4 1.000 0.827 0.370 0.100 0.016 1.000 0.621 0.133 0.016 0.001
0.8 0.999 0.769 0.309 0.088 0.041 0.987 0.323 0.027 0.002 0.000
ρ PANEL B: d = 1; δj = {5, 3, 2, 2} for Tao = {30, 55, 77, 100}; θ = 0
−0.8 0.370 0.051 0.002 0.000 0.000 0.811 0.429 0.173 0.063 0.021
−0.4 0.932 0.380 0.075 0.007 0.000 0.991 0.695 0.288 0.085 0.015
0.4 1.000 0.867 0.445 0.134 0.029 1.000 0.641 0.125 0.013 0.001
0.8 1.000 0.927 0.618 0.412 0.340 0.945 0.119 0.004 0.000 0.000

Note: See table 3

Table 6: Power of the PR test for stationary processes
d = 0; δj = {5, 3, 2, 2} for Tao = {30, 55, 77, 100}; θ = 0

τPRs τSSL∆sz

ρ n1 n2 n3 n4 n>4 n1 n2 n3 n4 n>4
0.9 0.996 0.637 0.179 0.030 0.002 0.998 0.718 0.259 0.049 0.004
0.7 0.975 0.502 0.117 0.014 0.001 0.995 0.651 0.208 0.040 0.005
0.5 0.941 0.373 0.064 0.007 0.000 0.979 0.601 0.184 0.035 0.005
0.3 0.844 0.248 0.038 0.004 0.000 0.957 0.520 0.168 0.037 0.007
0 0.619 0.117 0.009 0.001 0.000 0.881 0.444 0.164 0.048 0.011

Note: See table 3
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Table 7: Size of thePR and SSL tests. Periodic heteroskedastic random walks
PANEL A

τPRs τSSL∆sz

σ2q n1 n2 n3 n4 n>4 n1 n2 n3 n4 n>4
{3, 1, 3, 1} 0.2130 0.0363 0.0037 0.0003 0.0003 0.2040 0.0347 0.0040 0.0003 0.000
{30, 1, 30, 1} 0.5703 0.2617 0.1053 0.0433 0.0150 0.5420 0.2280 0.0897 0.0370 0.013
{3, 1, 1, 1} 0.3087 0.0637 0.0140 0.0023 0.0000 0.3090 0.0583 0.0137 0.0013 0.000
{30, 1, 1, 1} 0.9683 0.873 0.7063 0.5347 0.3673 0.9327 0.7757 0.5863 0.4100 0.264
{3, 3, 1, 1} 0.2253 0.0363 0.0050 0.0013 0.0003 0.2217 0.0313 0.0047 0.0013 0.000

PANEL B
τPRPH τPRP−PH

{1, 1, 1, 1} 0.044 0.001 0.000 0.000 0.000 0.045 0.002 0.000 0.000 0.000
{3, 1, 3, 1} 0.053 0.001 0.000 0.000 0.000 0.058 0.002 0.000 0.000 0.000
{30, 1, 30, 1} 0.049 0.001 0.000 0.000 0.000 0.049 0.001 0.000 0.000 0.000
{3, 1, 1, 1} 0.047 0.001 0.000 0.000 0.000 0.054 0.001 0.000 0.000 0.000
{30, 1, 1, 1} 0.053 0.001 0.000 0.000 0.000 0.053 0.001 0.000 0.000 0.000
{3, 3, 1, 1} 0.048 0.001 0.000 0.000 0.000 0.066 0.003 0.000 0.000 0.000

Notes: DGP: yt = yt−4+ut, ut ∼ iidN(0, σ2t−[t/s]∗s). 3000 replications.
T = 120. 5% critical values are used. ni stands for the frequency of
detecting the i− th outlier.

Table 8: Size of the PR test robust to periodic heteroskedasticity. Non-
stationary ARIMA processes

PANEL A: d = 1; δj = 0 ∀ j; ρ = 0
τPRPH τPRP−PH

θ n1 n2 n3 n4 n>4 n1 n2 n3 n4 n>4
−0.8 0.078 0.002 0.000 0.000 0.000 0.050 0.002 0.000 0.000 0.000
−0.4 0.064 0.002 0.000 0.000 0.000 0.046 0.002 0.000 0.000 0.000
0.4 0.022 0.001 0.000 0.000 0.000 0.041 0.002 0.000 0.000 0.000
0.8 0.004 0.000 0.000 0.000 0.000 0.019 0.002 0.000 0.000 0.000
ρ PANEL B: d = 1; δj = 0 ∀ j; θ = 0
−0.8 0.030 0.000 0.000 0.000 0.000 0.025 0.000 0.000 0.000 0.000
−0.4 0.076 0.003 0.000 0.000 0.000 0.055 0.003 0.000 0.000 0.000
0.4 0.023 0.001 0.000 0.000 0.000 0.037 0.001 0.000 0.000 0.000
0.8 0.003 0.000 0.000 0.000 0.000 0.025 0.001 0.000 0.000 0.000

Note: See table 3
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Table 9: Size of the PR test robust to periodic heteroskedasticity. Stationary
ARIMA processes

d = 0; δj = 0 ∀ j; θ = 0
τPRPH τPRP−PH

ρ n1 n2 n3 n4 n>4 n1 n2 n3 n4 n>4
0.9 0.050 0.001 0.000 0.000 0.000 0.051 0.001 0.000 0.000 0.000
0.7 0.047 0.001 0.000 0.000 0.000 0.046 0.003 0.000 0.000 0.000
0.5 0.056 0.003 0.000 0.000 0.000 0.047 0.003 0.000 0.000 0.000
0.3 0.061 0.003 0.000 0.000 0.000 0.056 0.004 0.000 0.000 0.000
0 0.078 0.002 0.000 0.000 0.000 0.055 0.002 0.000 0.000 0.000

Note: See table 3

Table 10: Power of the PR test robust to periodic heteroskedasticity. Non-
stationary ARIMA processes

PANEL A: d = 1; δj = {5, 3, 2, 2} for Tao = {30, 55, 77, 100}; ρ = 0
τPRPH τPRP−PH

θ n1 n2 n3 n4 n>4 n1 n2 n3 n4 n>4
−0.8 0.716 0.156 0.017 0.002 0.000 0.732 0.188 0.024 0.002 0.000
−0.4 0.936 0.379 0.059 0.006 0.000 0.947 0.426 0.084 0.013 0.000
0 0.997 0.662 0.161 0.014 0.001 0.999 0.697 0.240 0.040 0.004
0.4 1.000 0.823 0.275 0.039 0.003 1.000 0.839 0.368 0.095 0.009
0.8 0.999 0.740 0.218 0.026 0.002 0.998 0.775 0.282 0.068 0.010
ρ PANEL B: d = 1; δj = {5, 3, 2, 2} for Tao = {30, 55, 77, 100}; θ = 0
−0.8 0.428 0.049 0.003 0.000 0.000 0.363 0.048 0.004 0.000 0.000
−0.4 0.920 0.340 0.048 0.004 0.000 0.930 0.367 0.075 0.007 0.000
0.4 1.000 0.864 0.335 0.050 0.001 1.000 0.875 0.429 0.119 0.007
0.8 1.000 0.883 0.374 0.063 0.002 1.000 0.878 0.408 0.097 0.005

Note: See table 3

Table 11: Power of the PR test robust to periodic heteroskedasticity. Stationary
ARIMA processes

d = 0; δj = {5, 3, 2, 2} for Tao = {30, 55, 77, 100}; θ = 0
τPRPH τPRP−PH

ρ n1 n2 n3 n4 n>4 n1 n2 n3 n4 n>4
0.9 0.994 0.614 0.126 0.009 0.000 0.993 0.656 0.204 0.035 0.002
0.7 0.973 0.451 0.076 0.007 0.000 0.973 0.488 0.109 0.017 0.001
0.5 0.922 0.307 0.039 0.002 0.000 0.930 0.354 0.056 0.005 0.001
0.3 0.807 0.209 0.023 0.001 0.000 0.827 0.256 0.038 0.004 0.000
0 0.595 0.108 0.009 0.001 0.000 0.613 0.123 0.015 0.001 0.000

Note: See table 3
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Table 12: Detected outliers for US M1, CCM1, and the US currency in circula-
tion, CC.

τPRPH τPRs τSSL∆sz

CCM1

7.17 1999 : 12
7.08 2000 : 1
5.89 2001 : 2
5.11 2001 : 6

5.43 1999 : 12
6.19 2000 : 1
4.91 2001 : 2
4.57 2001 : 6

4.55 1999 : 12
5.31 2000 : 1
4.02 2001 : 2

CC

6.12 1999 : 10
9.77 1999 : 11
16.03 1999 : 12
10.59 2000 : 1
5.85 2001 : 2
5.08 2001 : 6

6.93 1999 : 11
10.26 1999 : 12
8.77 2000 : 1
4.97 2001 : 2
4.61 2001 : 6

5.83 1999 : 11
9.33 1999 : 12
7.61 2000 : 1
4.09 2001 : 2
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Figure 1: M1 and Currency in Circulation in the USA. Monthly data.: 1947-
2003.
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Figure 2: M1 and Currency in Circulation in the USA. Monthly data.: 1947-
2003. First differences.
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Figure 3: M1 and Currency in Circulation in the USA. Monthly data.: 1947-
2003. Seasonal differences.
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