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Abstract 
 

This paper proposes and analyses two types of asymmetric multivariate stochastic 
volatility (SV) models, namely: (i) SV with leverage (SV-L) model, which is based on 
the negative correlation between the innovations in the returns and volatility; and (ii) 
SV with leverage and size effect (SV-LSE) model, which is based on the signs and 
magnitude of the returns. The paper derives the state space form for the logarithm of the 
squared returns which follow the multivariate SV-L model, and develops estimation 
methods for the multivariate SV-L and SV-LSE models based on the Monte Carlo 
likelihood (MCL) approach. The empirical results show that the multivariate SV-LSE 
model fits the bivariate and trivariate returns of the S&P 500, Nikkei 225, and Hang 
Seng indexes with respect to AIC and BIC more accurately than does the multivariate 
SV-L model. Moreover, the empirical results suggest that the univariate models should 
be rejected in favour of their bivariate and trivariate counterparts. 
 
 
Keywords and phrases: Multivariate stochastic volatility, asymmetric leverage, 
dynamic leverage, size effect, numerical likelihood, Bayesian Markov chain Monte 
Carlo, importance sampling. 
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1  Introduction 
 
In both the conditional and stochastic volatility (SV) literature, there has been some 
confusion regarding the definitions of asymmetry and leverage. Originally, Christie 
(1982) investigated the negative relation between the ex-post volatility in the rate of 
returns on equity and the current value of the equity. We will refer to this phenomenon 
as the “leverage” effect. On the other hand, the “asymmetric” effect in volatility means 
that the effects of positive returns on volatility are different from those of negative 
returns of a similar magnitude. Therefore, leverage denotes asymmetry, but not all 
asymmetric effects display leverage. In the class of ARCH specifications that have been 
developed to capture asymmetric effects, the Exponential GARCH (EGARCH) model 
of Nelson (1991) and the GJR model of Glosten, Jagannathan and Runkle (1992) are 
widely used. Using the terminology given above, the EGARCH model can describe 
leverage whereas the GJR model can capture asymmetric effects but not leverage (for 
further details, see Asai and McAleer (2005b)). 
 

The asymmetric property of the SV model is based on the direct correlation 
between the innovations in both returns and volatility. For a theoretical development in 
the continuous time framework, Hull and White (1987) generalized the Black-Scholes 
option pricing formula to analyze SV and the negative correlation between the 
innovation terms. In empirical research, extensions of a simple discrete time model due 
to Taylor (1986) have been analyzed by Wiggins (1987), Chesney and Scott (1989), and 
Harvey and Shephard (1996) in order to accommodate the direct correlation. Although 
this extension has been called the asymmetric SV model, we will refer to the 
asymmetric behavior based on the direct correlation between the innovations as the “SV 
with leverage” (SV-L) model to distinguish it from an alternative model of asymmetry 
to be discussed below. 
 
    Danielsson (1994) suggested an alternative type of asymmetric SV model which is 
similar in spirit to that of the EGARCH model. Nelson (1991) used the absolute value 
function to capture the sign and magnitude of the previous value of normalized returns 
in accommodating asymmetric behaviour into an ARCH-type model. Danielsson (1994) 
used the absolute value function as in Nelson (1991), but incorporated the observed 
return into the SV specification as it is not computationally straightforward in the SV 
framework to incorporate the normalized disturbances. For this reason, we will refer to 
this type of specification as the “SV with leverage and size effect” (SV-LSE) model. 
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    Recently, So, Li and Lam (2002) considered a different type of threshold effects 
model in which the breaks in the constant and autoregressive parameter in the SV 
equation depend on the signs of the previous returns. An alternative form of asymmetry 
can be based on threshold effects, as proposed in Glosten, Jagannathan and Runkle (1992) 
in the context of conditional volatility models. These models will not be discussed in 
detail here as the empirical results in Asai and McAleer (2005a) show that their model is 
generally inferior to the SV-L model in terms of AIC and BIC. A variety of symmetric 
and asymmetric, univariate and multivariate, conditional and stochastic volatility 
models is analysed in McAleer (2005). 
 
   The first multivariate SV model was proposed by Harvey, Ruiz and Shephard (1994), 
who specified the model in terms of instantaneous correlations in the mean and 
volatility equations. However, their estimation technique was based on the inefficient 
quasi-maximum likelihood (QML) procedure. Danielsson (1998) suggested a 
multivariate SV-L model based on the specification considered by Harvey, Ruiz and 
Shephard (1994), but only estimated a symmetric version of the model. Shephard 
(1996) proposed a one factor multivariate SV model, while Liesenfeld and Richard 
(2003) proposed an efficient importance sampling method and estimated the one factor 
model.  
 

This paper considers multivariate extensions of the SV-L and SV-LSE models. The 
SV-L model, which is considered in Danielsson (1998), assumes a negative correlation 
between the returns and volatility innovations. As an alternative, the SV-LSE model 
accommodates the effect of the sign and magnitude of the previous return in the 
volatility equation by using the absolute value function. Both models assume 
instantaneous correlations in the mean and volatility equations. 
 

In order to estimate these multivariate models, this paper employs the numerical or 
Monte Carlo Likelihood (MCL) method proposed by Durbin and Koopman (1997). 
Sandmann and Koopman (1998) and Koopman and Uspensky (2002) used the MCL 
method to estimate the SV-L model and the SV in mean model (without asymmetry), 
respectively. The efficiency of the MCL method is similar to the Bayesian Markov 
chain Monte Carlo (MCMC) method proposed by Jacquier, Polson and Rossi (1994). 
However, for the problem considered in this paper, the computational burden of the 
MCL method is about one-fifth of the MCMC method, and one-eighth of Danielsson’s 
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(1994) accelerated Gaussian importance sampling (AGIS) approach. 
 

The paper is organized as follows. Section 2 discusses univariate and multivariate 
asymmetric SV models, and presents a state space form for the logarithm of the squared 
returns which follow the multivariate SV-L model. Section 3 discusses the MCL 
method and develops an extension for estimating multivariate SV models. Section 4 
presents some empirical results by using trivariate data of Standard and Poor's 500 
Composite Index, Nikkei 225 Index, and Hang Seng Index. Section 5 presents some 
concluding remarks.  

 
In the following section, exp( )�  and ln( )�  denote the element-by-element 

exponential and logarithmic operators, respectively, and 1{ } { , , }mdiag x diag x x= K  
denotes the M -dimensional diagonal matrix, with diagonal elements given by 

1( , , )mx x x ′= K . 
 
2  Asymmetric Stochastic Volatility Models 
 
Alternative univariate and multivariate asymmetric SV-L and SV-LSE models will be 
considered in this section. 
 
2.1  Univariate Models 
 
    The SV-L model captures asymmetry through the negative correlation between the 
returns and volatility innovations, as follows:  
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where ( )1|t t t ty R E R −= − ℑ  and tR  is the return on a financial asset. For purposes of 

identification, it is necessary to set either 1σ =  or 0µ = . This paper uses the 
restriction 1σ =  as it is preferable for comparing the SV-LSE model with the model of 
Danielsson (1994) shown below. As discussed in Chesney and Scott (1989), this model 
has an interpretation of some continuous time models.  
 
   Conditionally on the signs of ty , Harvey and Shephard (1996) showed that the state 

space form for the logarithm of squared returns, 2lnt tx y= , was given as follows: 
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where ts  takes the value one (minus one) if ty  is positive (otherwise), 

0.7979A ηλσ= , and 1.1061B ηλσ= . The mean and variance of tξ  are -1.2703 and 

2 / 2π , respectively. Harvey and Shephard (1996) proposed the quasi-maximum 
likelihood (QML) method of estimating the model based on the Kalman filter. The 
normal approximation of 2ln (1)χ , which is far from being normal, implies that the 
QML estimator is likely to have poor small sample properties, even though it is 
consistent.  
 
    In order to cope with this problem, Sandmann and Koopman (1998) suggested the 
Monte Carlo likelihood (MCL) method, which will be explained in Section 3 below. 
Asai and McAleer (2005a) conducted Monte Carlo experiments to investigate the finite 
sample properties of the MCL estimator. It was shown that the bias in the MCL 
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estimator was generally very small, and that the coverage probability (or the fraction of 
times that the true parameter values falls within the confidence interval) was close to the 
true value. 
 
    It may be useful to note two other estimation methods, namely the efficient method 
of moments (EMM) method proposed by Gallant and Tauchen (1996), and the Bayesian 
MCMC method of Jacquier, Polson and Rossi (2004) and Yu (2005). The EMM 
matches the scores of an auxiliary model via simulation. Gallant and Tauchen (1996) 
stated that, if the auxiliary model is a good approximation to the distribution of the data, 
the EMM estimator is as efficient as maximum likelihood. Chernov et al. (2003) used 
the EMM approach to estimate asymmetric SV models in the more general framework. 
However, the EMM provides no estimate of the instantaneous volatility, so that an 
additional form of estimation is required. Second, compared with the MCL method of 
Sandmann and Koopman (1998), the Bayesian MCMC method is computationally 
demanding. The Monte Carlo results of Sandmann and Koopman (1998), which 
compare the MCL method with the MCMC method of Jacquier, Polson and Rossi 
(1994), show that MCL yields a larger bias than MCMC when the unconditional 
variance of the time-varying log-volatility is relatively small. This outcome is not 
particularly relevant for the data set used in this paper as such a result suggests that the 
volatility is not particularly significant. 
 
    This paper focuses on another asymmetric type of SV model. Danielsson (1994) 
considered the following model: 
 
 exp( / 2), ~ (0,1), 1, , ,t t t ty h N t Tε ε= = K    (5) 
 

 2
1 1 2 | | , ~ (0, ),t t t t t th y y h N ηµ γ γ φ η η σ+ = + + + +    (6) 

 
where ( ) 0s tE ε η =  for any s  and t . This model incorporates the effect of the sign 
and magnitude of the previous return into the volatility equation by using the absolute 
value function. We refer to this type of asymmetry as an “SV with leverage and size 
effect” (SV-LSE) model. In the original work of Danielsson (1994), the weak serial 
correlation of stock returns was also considered in the SV model. In the current paper, 

we will treat such effects by using the definition ( )1|t t t ty R E R −= − ℑ . It is possible to 
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estimate the model using the accelerated Gaussian importance sampler (AGIS) 
algorithm, which is a simulation-based technique with time requirements and precision 
that are similar to those of the MCMC method. However, the AGIS method is difficult 
to generalize to multivariate SV-L models, and remains computationally demanding 
relative to the MCL method. 
 
    Asai and McAleer (2005a) estimated the SV-L and SV-LSE models by using 
returns of S&P 500 and TOPIX stock index returns, and the AUD/USD and Japanese 
Yen/USD exchange rates. The empirical results showed that all four data sets always 
preferred the SV-LSE model to the SV-L model on the basis of both AIC and BIC.  
 
2.2  Multivariate Models 
 
    Danielsson (1998) considered a multivariate extension of the SV-L model. The 
matrix representation of the model is given by 
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where 1( , , )t t mth h h ′= K  is the vector of unobserved log-volatility, µ  and φ  are 

1m×  parameter vectors, the operator o  denotes the Hadamard (or 

element-by-element) product, { },ijη ησΣ =  is the positive-definite covariance matrix, 

and { }ijPε ρ=  is the correlation matrix, such that Pε  is a positive definite matrix with 

1iiρ =  and | | 1ijρ <  for any i j≠ . When 1 0mλ λ= = =L , the multivariate SV-L 
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model reduces to the model of Harvey, Ruiz, and Shephard (1994). If the off-diagonal 

elements of Pε  and ηΣ  are all equal to zero, each element of ty  follows the 

univariate SV-L model. In other words, all assets affect each other through the 
correlation matrix of the conditional distribution and/or the covariance matrix of the 
log-volatility process.  
 

    Assuming that the off-diagonal elements of ηΣ  are all equal to zero, the model 

corresponds to the constant conditional correlation (CCC) model proposed by 
Bollerslev, Engle and Wooldridge (1988) in the framework of multivariate GARCH 
models. In the CCC model, each conditional variance is specified as a univariate 
GARCH model (that is, with no spillovers from any other asset), while each conditional 
covariance assumes a constant conditional correlation times the corresponding 

conditional standard deviations. Thus, if the off-diagonal elements of ηΣ  are not all 

equal to zero, then the elements of th  have spillover effects across assets. It should be 
noted that Danielsson (1998) only suggested the multivariate SV-L model given in 
equations (7)-(9), but did not estimate the model. 
 
    Conditionally on the signs of each element of ty , the logarithmic transformation 

of each element of 2
ty  gives 
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 1 1 1
,
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where 1( , , )t t mts s s ′= K  and its  takes one (minus one) if ity  is positive (otherwise), 

L  and Pε  are defined by (9), and Pε  and Rε  are given in the Appendix (where 

equations (10) and (11) are also derived). When 1 0mλ λ= = =L , that is, 0L = , this 
state space form reduces to the model of Harvey, Ruiz, and Shephard (1994). If there is 

no correlation across the variables, that is, mP Iε =  and { },11 ,, , mmdiagη η ησ σΣ = K , 

each ity  has the state space form derived in Harvey and Shephard (1994).  
 
   The mean of each element of tξ  is -1.2703. Harvey, Ruiz, and Shephard (1994) 

showed that the covariance matrix of tξ , denoted ξΣ , is given by { }2( / 2) ijξ π ρ∗Σ = , 

where 1iiρ∗ = , 
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and ( ) ( 1) ( 1)nx x x x n= + + −L . If ijρ∗  can be estimated, then it is also possible to 

estimate the absolute value of ijρ , and the cross correlation between different values of 

itε . Estimation of the signs of ijρ  may be obtained by returning to the untransformed 

observations, and noting that the sign of each of the pairs it jtε ε  ( , 1, ,i j m= K ) will be 

the same as the corresponding pairs of observed values, it jty y . Thus, the sign of ijρ  is 

estimated as positive if more than one-half of the pairs it jty y  is positive. 
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By using the density function of 2ln (1)χ  given in Sandmann and Koopman 

(1998) and the linear transformation, we have the density function of tξ  as follows: 
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where { }ijPξ ρ∗= , 1.2703c = − , ι  is an 1m×  vector of ones, 
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and iq  is the i -th row of 1/ 2Pξ
− . If there is no correlation among the variables, that is, 

mP Iξ = , then the density function reduces to a multiple of the density function of 

2ln (1)χ . In Section 3, this paper develops an MCL method to estimate the multivariate 
SV-L model based on the true density function and the state space form given in 
equations (10) and (11). 
 
    The SV-LSE model can be extended to the multivariate case in a similar way, as 
follows: 
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where 1γ  and 2γ  are 1p×  parameter vectors. When the off-diagonal elements of Pε  
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and ηΣ  are all equal to zero, each element of ty  follows an independent univariate 

SV-LSE model. If the off-diagonal elements of ηΣ  are all equal to zero, then the model 

corresponds to the SV version of the CCC model of Bollerslev, Engle and Wooldridge 
(1988). Section 3 will explain the MCL method to estimate the multivariate SV-LSE 
model.  
 
3  Monte Carlo Maximum Likelihood Estimation 
 
This section develops the MCL method to estimate two types of multivariate 
asymmetric SV models, namely the multivariate SV-L and SV-LSE models. The first 
part of this section briefly explains the general framework of the MCL approach 
proposed by Durbin and Koopman (1997). The reminder of this section constructs the 
approximating densities, as required by the MCL approach, for each of the multivariate 

SV-LSE and SV-L models. The MCL is based on the density of 2lnt tx y= . 

 
3.1  Likelihood Evaluation via Importance Sampling 
 
    For the MCL method, the likelihood function can be approximated arbitrarily by 
decomposing it into a Gaussian part, which is constructed by the Kalman filter, and a 
remainder function, for which the expectation is evaluated through simulation.  
 

Let 1( , ) 'Tx x x= K  and 1( , , )Th h h ′= K , and denote the marginal densities of x  
and h , their joint density, and the conditional density of x  given h  for a given 
unknown parameter vector ψ , by ( | )p x ψ , ( | )p h ψ , ( , | )p x h ψ  and ( | , )p x h ψ , 
respectively. The likelihood function is defined by 
 

 ( ) ( | ) ( , | ) ( | , ) ( | ) .L p x p x h dh p x h p h dhψ ψ ψ ψ ψ= = =∫ ∫   (18) 

 
Durbin and Koopman (1998) considered the likelihood of the approximating Gaussian 
model as 
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Note that the MCL method uses the same density of |h ψ  as the true model to 
construct the approximating Gaussian model. Substituting ( | )p h ψ  from the above 
equation into (18) gives 
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where gE  denotes the expectation with respect to ( | , )g h x ψ . The advantage of the 

approach of Durbin and Koopman (1998) is that it requires simulation only to estimate 
departures of the likelihood from the Gaussian likelihood, rather than the likelihood 
itself. Durbin and Koopman (1998) suggested that ( | , )g h x ψ  be employed as the 
importance density for the simulations. 
 
    The log-likelihood function is given by 
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and its consistent estimator is 
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and ( )ih  denotes a draw from the importance density ( | , )g h y ψ  (see Durbin and 
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Koopman (1998), Sandmann and Koopman (1998) and Koopman and Uspnesky (2002) 
for detailed discussions of the method). 
 

The MCL method obtains estimates of the parameters, ψ , through numerical 
optimization of equation (20). The log-likelihood function of the approximating model, 

ln ( )gL ψ , can be used to obtain the starting values. The choice of N governs the 

accuracy of the approximation to the likelihood function such that, as N increases, the 
approximation becomes more accurate. All the calculations in this paper are based on 

200N = . 
 
   Sandmann and Koopman (1998), Koopman and Uspnesky (2002) and Asai and 
McAleer (2005a) investigated finite sample properties of MCL estimator for univariate 
SV models. As stated in the previous section, these authors showed that the MCL 
method is useful practically for estimating various kinds of SV models 
 
3.2  Approximating Gaussian Density for Asymmetric Multivariate SV Models 
 
    For convenience, this paper first constructs the approximating Gaussian density for 
the multivariate SV-L model. As the transformed multivariate SV-L model has the state 
space form given by (10) and (11), the approximating Gaussian density is based on the 
linear Gaussian model given by: 
 

 

2ln ,

~ ( , ), 1, , ,

t t t t

t t t

x y h u

u N H t Tµ

= = +

= K

 (21) 

 
where tµ  and tH  are selected in such a way that the time-varying mean and variance 
of tx  implied by the approximating model (21) are as close as possible to the true 
model given by (10) and (11). 
 
  As for the non-Gaussian true density given by ( | )tp ξ ψ , we have  
 

( | , , ) ( | , ) ( | , )t t t t t t t tp x h s p x h s p sψ ψ ξ ψ= − = . 
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Based on this fact, it is possible to obtain tµ  and tH  by equalizing the first and 
second derivatives of ( | , , )t t tp x h s ψ  and the approximating density with respect to tξ , 
as follows: 
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where ˆ ( | , , )t g tE x sξ ξ ψ=  is obtained from the Kalman filter and smoother. Although 

this approach yields a positive definite matrix tH , as follows: 
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where ( )k �  and iq  are defined by equation (13), this matrix is not stable. Instead of 
this covariance matrix, it is suggested in this paper that the following method be used:  
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These tµ  and tH  can be interpreted as natural extensions of the approach of 
Sandmann and Koopman (1998) in that they reduce to the original values proposed in 

the MCL method when 1m = , namely 0 and 2 /( 1)t
t eξξ −  for tµ  and tH , 

respectively. It should be noted that ˆ ( | , , )t g tE x sξ ξ ψ=  is obtained from the Kalman 

filter and smoother. This procedure usually requires 7-9 iterations before convergence at 
each step of the optimization. 
 
   In addition to tH , it is necessary to guarantee the positive definiteness of  
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where tL∗  and tη
∗Σ  are defined by equation (11), in order to perform the Kalman filter 

and smoother. Asai (2005) suggested using the nearest covariance matrix proposed by 
Higham (1988), who proved that the nearest positive symmetric matrix in the Frobenius 
norm to any real symmetric matrix C  is ( ) / 2C P+ , where P  is the symmetric polar 
factor of C . When tΩ  is non-positive semi-definite in the approximating density, this 
approach replaces tΩ  by its nearest covariance matrix. 
 
   Now consider the approximating Gaussian density for the multivariate SV-LSE 
models, for which the approximating model is given by equations (16) and (21). Thus, 
we can apply the same approach stated above except for the nearest covariance matrix. 
As L O=  in this case, tΩ  is always positive definite. 
 
4  Empirical Results 
 
This section examines the MCL estimates of the univariate and multivariate SV-L and 
SV-LSE SV models for three sets of empirical data, namely Standard and Poor's 500 
Composite Index (S&P), Nikkei 225 Index (Nikkei), and Hang Seng Index (Hang Seng). 
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The sample period for all three series is 1/2/1986 to 10/4/2000, giving 3605T =  

observations. Returns 
itR  are defined as , -1100 {log   -  log  } it i tP P×  minus the sample 

mean, where itP  is the closing price on day t  for stock i . The autocorrelation 
structure in the stock returns was removed by using the following threshold AR(1) 
model:  
 

( )
1 11 , , , 1|

t tit t i d i d i tE R c Rθ
− −− −ℑ = +  

 
where itd  is 0 if 0itR > , and 1 otherwise. Hereafter, for convenience we will refer to 

the stock returns as ( )1
ˆˆ |it it it ty R E R −= − ℑ . 

 
  Table 1 shows the MCL estimates of the univariate SV-L and SV-LSE models. All 
the estimated parameters are significant at the five percent level, except for µ  in the 
SV-L model for Nikkei. As Table 1 also shows that 0ρ <  in the SV-L models and 

1 2 0γ γ< <  in the SV-LSE model, there exist clear leverage effects in all three data sets. 
The SV-L and SV-LSE models are estimated by using the MCL method based on the 

distribution of 2ln ty . For all data sets, the SV-LSE model is preferred to the SV-L 

model on the basis of AIC and BIC.  
 
    Table 2 presents the estimates of the bivariate SV-L model. For each pair of three 

data sets, all the estimates of ,12ησ , which is the parameter of the instantaneous 

correlation of volatility, are significant at the five percent level. While the correlation 
between the variables, 12ρ , is significant for the pairs (S&P, Nikkei) and (Nikkei, Hang 
Seng), it is insignificant for the pair (S&P, Hang Seng). The significance (and 
insignificance) and signs of the estimates of the other parameters are unchanged from 
the univariate case in Table 1.  
 
    For the bivariate SV-LSE model, the MCL estimates in Table 3 indicate that the 

estimates of ,12ησ  and 12ρ  are significant for all three pairs of variables, which 

implies the existence of spillovers in both the mean and volatility equations. Comparing 
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AIC and BIC in Table 3 for SV-LSE with those in Table 2 for SV-L, the bivariate SV-L 
model is preferred for all data sets. The results in Tables 1-3 also indicate the likelihood 

ratio tests for the null hypothesis , 0ij ijησ ρ= =  for any , ( )i j i j≠  reject the 

univariate models in favour of their bivariate counterparts. 
 
    Table 4 shows the results for the trivariate SV-L model. All the estimated 

off-diagonal elements of ηΣ  and Pε  are significant at the five percent level, except 

for 13ρ , which is the correlation between the conditional distributions of S&P and Hang 
Seng. This result is consistent with the estimates from the bivariate models. The 

significance of the estimated off-diagonal elements of ηΣ  and Pε  implies the 

rejection of the univariate models in favour of the trivariate SV-L model. The signs and 
significance of the other parameter estimates are unchanged from the univariate case. 
 
    Table 5 presents the MCL estimates for the trivariate SV-LSE model. As all the 

estimated off-diagonal elements of ηΣ  and Pε  are significant at the five percent level, 

this result is also consistent with the estimates from the bivariate models. The 

significance of all the off-diagonal elements of ηΣ  and Pε  implies the rejection of the 

univariate models in favour of the trivariate SV-LSE model. The signs and significance 
of the other estimated parameter are unchanged from the univariate case. 
 
5  Concluding Remarks 
 
In this paper, two types of asymmetric multivariate stochastic volatility (SV) models 
were proposed and analysed, namely: (i) “SV with leverage” (SV-L) model based on the 
negative correlation between the innovations in the returns and volatility; and (ii) “SV 
with leverage and size effect” (SV-LSE) model based on the signs and magnitude of the 
returns.   
 
The paper derived the state space form for the logarithm of the squared returns which 
follow the multivariate SV-L model, and developed estimation methods for the 
multivariate SV-L and SV-LSE models based on the Monte Carlo likelihood (MCL) 
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approach. The empirical results showed that the multivariate SV-LSE model fits the 
data more accurately with respect to AIC and BIC than does the multivariate SV-L 
model to the bivariate and trivariate returns of S&P 500, Nikkei 225, and Hang Seng 
indexes. Moreover, the empirical results suggest that the univariate models should be 
rejected in favour of their bivariate and trivariate counterparts. 
 
    The asymmetric multivariate SV-LSE and SV-L models can be extended in terms 
of distributional considerations, as follows:  
 
(1) Modelling the tails of the conditional distribution: A direct way of accommodating 
this problem is to assume the Student t-distribution or a mixture of two or more normal 
distributions (for further details, see Liesenfeld and Jung (2000), Bai, Russell and Tiao 
(2003), and Watanabe and Asai (2003), among others). In this context, we may consider 
asymmetric multivariate SV models with heavy-tailed distributions. 
 
(2) An alternative is to consider the two factor model analyzed by Chernov et al. (2003). 
In their specification, the second SV factor is expected to act as a factor dedicated to the 
exclusive modelling of the tail behaviour. The empirical analysis of Asai (2005) 
indicates that AIC and BIC tend to select two-factors among multi-factors for S&P 500 
and TOPIX stock returns. Based on these results, the asymmetric multivariate and 
multi-factor SV model would seem to be useful candidates for extension.  
 



 20

Appendix A: Some Moments of the Folded Normal and Half Normal 
Distributions 
 

If X  has a normal distribution with mean µ  and variance 2σ , ( )2,X N µ σ� , 

then Y X=  is said to have a folded normal distribution. Leone, Nelson and 

Nottingham (1961) discussed various properties and applications of the folded normal 
distribution, while Elandt (1961) derived the general formula for the moments. The first 
and second moments are given by 
 

 

( )

( )

2

2

2 2 2

2 exp 1 2 ,
2

,

E Y

E Y

µ µσ µ
π σ σ

µ σ

⎛ ⎞ ⎡ ⎤⎛ ⎞= − − − Φ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

= +

 

 

where ( )xΦ  is the distribution function of the standard normal distribution. If the 

folding is about the mean, such that 0µ = , this leads to a half normal distribution. The 

first and second moments of the half normal distribution are 2 π  and 2σ , 

respectively. For odd moments, ( ) ( )2 1 2 12 ...6 4 2 2 1,2,3,n nE Y n nσ π+ +⎡ ⎤ = ⋅ ⋅ =⎣ ⎦ K .  

 
This paper uses the mean of the folded normal distribution, which requires the 

derivation of two expectations, namely ( ) 2E a ε ε⎡ ⎤Φ⎣ ⎦  and ( ) 2lnE a ε ε ε⎡ ⎤Φ⎣ ⎦ , 

where a  is a constant and ε  follows a half normal distribution with unit variance. 

 
    In order to derive these expectations, it is convenient to use the power series of 

( )zΦ , as given by: 
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 ( ) ( ) ( )
2 1

0

1 ,
2 1 3 5 2 1

n

n

zz z
n

φ
+∞

=

Φ = +
⋅ ⋅ +∑

K
 

 

where ( )zφ  is the standard normal density function (see Abramowitz and Stegun 

(1970, Section 26.2.11)). Substituting the power series into the above expectations leads 
to the following: 
 

( ) ( ) ( )
2 1

2 32

0

1
2 1 3 5 2 1

n
n

n

aE a E a
n

ε ε φ ε ε
+∞

+

=

⎡ ⎤⎡ ⎤Φ = +⎣ ⎦ ⎣ ⎦⋅ ⋅ +∑
K

, 

 

( ) ( ) ( )
2 1

2 22 2 2

0

1ln ln ln ,
2 1 3 5 2 1

n
n

n

aE a E E a
n

ε ε ε ε ε φ ε ε ε
+∞

+

=

⎡ ⎤⎡ ⎤ ⎡ ⎤Φ = +⎣ ⎦⎣ ⎦ ⎣ ⎦⋅ ⋅ +∑
K

 

 
as it is possible to exchange the summation and integral for these cases. Based on the 
odd moments of the half normal distribution, we have 
 

 ( ) ( ) ( )
( )

3/ 22 2 1 2

0

2 4 6 2 21 1
1 3 5 2 1

nn

n

n
E a a a

n
ε ε

π

∞ − −+

=

⋅ ⋅ +
⎡ ⎤Φ = +⎣ ⎦ ⋅ ⋅ +∑

K

K
.  

 
In order to obtain an analytical solution of the above expression, the expectations 

of the chi-squared distribution and a property of the gamma function are required, 
namely:  
 

[ ]2
2

2ln lnE Eε ε χ
π

⎡ ⎤ =⎣ ⎦ , 

 

( )
( ) [ ]

1
1

2 2

2 1 2
ln ln

2

n
n

n

n
E Eν ν ν

ν
χ χ χ

ν

+
+

+ +

Γ + +
⎡ ⎤ =⎣ ⎦ Γ

, 

 
where νχ  follows a chi-squared distribution with degrees of freedom given by ν . 
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According to Abramowitz and Stegun (1970, Section 26.4.36), 

[ ] ( )ln 2 ln 2E νχ ψ ν= + , where ( )ψ �  is the digamma function, which leads to the 

following: 
 

( ) ( ){ } ( )

( ) ( ){ }

1/ 22 2

3/ 22 1 2

0

1ln 1 ln 2 1
2

1 3 2 ln 2 .
nn

n

E a a a

a a n

ε ε ε ψ
π

ψ

−

∞ − −+

=

⎡⎡ ⎤Φ = + + +⎣ ⎦ ⎢⎣

⎤+ + + + ⎥⎦
∑

 

 
 
Appendix B. Moments of the Multivariate Half Normal Distribution 
 
    In order to consider the multivariate half normal distribution, consider an 
m-dimensional random vector, X , which follows a multivariate normal distribution 

with mean zero and correlation matrix given by { }ijP ρ= . As ( )0,X N P� , X  is 

said to have a multivariate half normal distribution. It is straightforward to extend this 
result to a more general covariance matrix. The purpose of this Appendix is to derive the 

first two moments of X  and the expectation of the outer-product of X  and 2ln X . 

 
    First, consider a cross-product of the elements of X . For i j≠ , we have 
 

 ( )|i j i j iE x x E x E x x⎡ ⎤= ⎣ ⎦ . 

 

Noting that ( )2| ,1j i ij i ijx x N xρ ρ−�  and |j ix x  has the folded normal distribution, 

we obtain the moments of i jx x  as follows: 

 

 ( ) ( )3/ 22 22 1 1 2i j ij i iE x x a E a x xρ
π

− ⎡ ⎤⎡ ⎤= + − − Φ⎣ ⎦⎣ ⎦  
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where 21ij ija ρ ρ= − . Appendix A shows the closed-form solution of the last 

expectation, and also the first two moments of ix . Therefore, we have the first two 

moments of the multivariate half normal distribution as 
 

2 , ,XE X E XX Pι
π

′= =  

 

where the ( ),i i  element of XP  is one, while the ( ),i j  element is given by 

 

( ) ( )
( )

3/ 22 2 2

0

2 4 6 2 22 1 1
1 3 5 2 1

n
ij ij

n

n
n

ρ ρ
π

∞
+

=

⎡ ⎤⋅ ⋅ +
− +⎢ ⎥⋅ ⋅ +⎣ ⎦

∑
K

K
. 

 

    Now consider the expectation of the outer product of X  and 2ln X , that is, 

{ }2lnXR E X X⎡ ⎤′≡ ⎢ ⎥⎣ ⎦
. For the univariate standard normal variable x , where 

( )0,1x N� , Harvey and Shephard (1996) showed that  

 

( ) ( ){ }2ln 1 2 ln 2 2E x x ψ π= + . 

 

Thus, the ( ),i i  element of XR  is ( ){ }1 2 ln 2 2ψ π+ , so that it is only necessary 

to consider the off-diagonal elements of XR , 2lni jE x x⎡ ⎤⎣ ⎦ . As the expectation of 

|i jx x  is obtained as the mean of the folded normal distribution, it follows that 
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E a x x x

π
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π

−
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For the right-hand side, we can derive the solution of the first term by tedious 

calculation, while the last term is given in Appendix A. Therefore, the ( ),i j  element of 

XR  is give by  

 

( ) ( )2 2 2

0

2 2 1ln 1 1 ln 2
2

n
ij ij ij

n

nρ ρ ρ ψ
π

∞

=

⎡ ⎤⎧ + ⎫⎛ ⎞− + − +⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎩ ⎭⎣ ⎦

∑ . 

 
Appendix C. Moments of the Transformed Leverage MSV Model 
 

The logarithmic transformation of the Leverage MSV model yields the state space 
form of equations (10) and (11), which will be developed in this Appendix. Let sE  
denote the expectation conditional on the signs of ty , ts , and assign a similar 
interpretation to the respective variance and covariance operators. Recalling the fact that 

( )1 1| ,t t tN LP LP Lε η εη ε ε− −Σ −�  and the results of Appendix B, we have 

 

 [ ] 1 12( ) ( | ) ,t s t s t t s t tE E E E LP LP sε εµ η η ε ε
π

∗ − −⎡ ⎤≡ = = =⎣ ⎦  
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and 
 

{ } ( ) { }

( ){ }

{ }

2 2

2 1

1 2

1

( , ) ln ln

2| ln

2ln

2 ( ) ,

t s t t s t t s t t

s t t t t

s t t t

t

L Cov E E E

E E c LP s

LP E c s

LP R c s

ε

ε

ε ε

η ξ η ε η ε

η ε ε ι
π

ε ε ι
π

ι
π

∗

−

−

−

⎡ ⎤ ⎛ ⎞′ ′≡ = − ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

⎡ ⎤′ ′= −⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤′ ′= −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎧ ⎫⎪ ⎪ ′= −⎢ ⎥⎨ ⎬
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

o

 

 

where Pε  and Rε  are the correlation matrices of the multivariate half normal 

distribution arising from ( )0,t N Pεε �  and the expectation of the outer-product of  

tε  and 2ln tε , respectively. The constant c  is defined by 

( )1 2 ln 2 1.2703c ψ= + = − .  
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Table 1: MCL Estimates of the Univariate SV-L and SV-LSE Models 

 
Parameter SV-L  SV-LSE  

 S&P Nikkei Hang Seng S&P Nikkei Hang Seng 
φ  0.9606 0.9635 0.93564 0.9821 0.9819   0.9799 
 (0.0083) (0.0064) (0.0094) (0.0052) (0.0054) (0.0061) 

ησ  0.2221 0.2466 0.3444 0.1907 0.2057 0.2745 

 (0.0235) (0.0214) (0.0239) (0.0177) (0.0177) (0.0184) 
µ  -0.0177 0.0037 0.0294 0.0331 0.0332 0.0647 
 (0.0054) (0.0039) (0.0069) (0.0095) (0.0093) (0.0101) 
λ  -0.3028 -0.4376 -0.2902    
 (0.0513) (0.0396) (0.0435)    

1γ     -0.1149 -0.0928 -0.0646 
    (0.0159) (0.0100) (0.0089) 

2γ     -0.0615 -0.0338 -0.0516 
    (0.0128) (0.0101) (0.0091) 

LogLik -7876.3 -8281.8 -8107.5 -7846.6 -8088.9 -7971.5 
AIC 15760.6 16572.6 16223.2 15703.1 16187.8 15952.9 
BIC 15785.4 16596.4 16247.8 15734.1 16218.7 15983.8 

Note: ‘LogLik’ is the log-likelihood based on 2ln ty , and AIC and BIC are calculated based on 

‘LogLik’. 
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Table 2: MCL Estimates for the Bivariate SV-L Model 
 

Parameter (S&P, Nikkei) (S&P, Hang Seng) (Nikkei, Hang Seng) 

iφ  0.9638 0.9701 0.9606   0.9536 0.9627   0.9478 
 (0.0074) (0.0050) (0.0090) (0.0096) (0.0052) (0.0064)

,iiησ  0.0459 0.0231 0.0558 0.0407 0.0559 0.0314 

 (0.0095) (0.0042) (0.0011) (0.0078) (0.0070) (0.0051)

,12ησ  0.0548  0.0943  0.0944  

 (0.0078)  (0.0179)  (0.0099)  

iµ  -0.0169 0.0030 -0.0180 0.0220 0.0045 0.0245 
 (0.0050) (0.0032) (0.0063) (0.0068) (0.0034) (0.0056)
iλ  -0.2744 -0.4153 -0.2743 -0.2359 -0.3339 -0.1984 
 (0.0518) (0.0449) (0.0263) (0.0278) (0.0138) (0.0138)

12ρ  0.1251  0.0359  0.3190  
 (0.0582)  (0.0232)  (0.0322)  

LogLik -16144.7  -15956.7  -16369.9  
AIC 32309.4  31922.4  32741.8  
BIC 32371.3  31995.3  32821.7  

Note: ‘LogLik’ is the log-likelihood based on 2ln ty , and AIC and BIC are calculated 

based on ‘LogLik’. 
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Table 3: MCL Estimates for the Bivariate SV-LSE Model 
 

Parameter (S&P, Nikkei) (S&P, Hang Seng) (Nikkei, Hang Seng) 

iφ  0.9882    0.9845 0.9821   0.9799 0.9819 0.9799 
 (0.0038) (0.0047) (0.0059) (0.0065) (0.0054) (0.0071) 

,iiησ  0.0342 0.0380 0.0420 0.0759 0.0376 0.0741 

 (0.0064) (0.0059) (0.0077) (0.0112) (0.0060) (0.0110) 

,12ησ  0.0180  0.0302  0.0243  

 (0.0038)  (0.0053)  (0.0047)  

iµ  0.0357 0.0288 0.0370 0.0604 0.0291 0.0623 
 (0.0081) (0.0083) (0.0099) (0.0109) (0.0091) (0.0104) 

1iγ  -0.1038 -0.0905 -0.1115 -0.0594 -0.0855 -0.0634 
 (0.0153) (0.0093) (0.0156) (0.0086) (0.0093) (0.0088) 

2iγ  -0.0621 -0.0297 -0.0676 -0.0476 -0.0291 -0.0493 
 (0.0114) (0.0090) (0.0128) (0.0101) (0.0100) (0.0097) 

12ρ  0.0029  0.0007  0.3527  
 (0.2540)  (0.3549)  (0.0362)  

LogLik -15926.3    -15798.3   -16039.4  
AIC 31876.6  31620.7  32102.7  
BIC 31950.9  31694.9  32177.0  

 

Note: ‘LogLik’ is the log-likelihood based on 2ln ty , and AIC and BIC are calculated based 

on ‘LogLik’. 
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Table 4: MCL Estimates for the Trivariate SV-L Model 
 

Parameter S&P Nikkei Hang Seng 

iφ  0.9612   0.9636 0.9361 
 (0.0072) (0.0057) (0.0109) 

,1iησ  0.0514 0.0248 0.0364 

 (0.0085) (0.0047) (0.0067) 

,2iησ   0.0618 0.0312 

  (0.0084) (0.0060) 

,3iησ    0.1187 

   (0.0181) 

iµ  -0.0173 0.0035 0.0297 
 (0.0046) (0.0039) (0.0073) 
iλ  -0.2493 -0.4166 -0.2799 
 (0.0373) (0.0360) (0.0334) 

1iρ  1 0.1487 0.0574 
  (0.0369) (0.0423) 

2iρ   1 0.2451 
   (0.0381) 

LogLike -24210.5   
AIC 48457.0   
BIC 48568.4   

Note: ‘LogLik’ is the log-likelihood based on 2ln ty , and 

AIC and BIC are calculated based on ‘LogLik’.
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Table 5: MCL Estimates for the Trivariate SV-LSE Model 
 

Parameter S&P Nikkei Hang Seng 

iφ  0.9874 0.9835 0.9810 
 (0.0039) (0.0050) (0.0072) 

,1iησ  0.0388 0.0183 0.0308 

 (0.0065) (0.0039) (0.0049) 

,2iησ   0.0378 0.0255 

  (0.0058) (0.0049) 

,3iησ    0.0766 

   (0.0106) 

iµ  0.0383 0.0284 0.0599 
 (0.0081) (0.0084) (0.0098) 

1iγ  -0.1026 -0.0865 -0.0599 
 (0.0146) (0.0091) (0.0084) 
2iγ  -0.0666 -0.0288 -0.0478 
 (0.0110) (0.0092) (0.0092) 

1iρ  1 0.0001 0.0000 
  (0.4567) (0.1723) 

2iρ   1 0.3411 
   (0.0421) 

LogLike -23852.3   
AIC 47746.5   
BIC 47876.6   

 

Note: ‘LogLik’ is the log-likelihood based on 2ln ty , and 

AIC and BIC are calculated based on ‘LogLik’. 
 
 


