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Polarization or Moderation? Intra-group heterogeneity in

endogenous-policy contestsI

Daniel Cardonaa,∗, Jenny De Freitasa, Antoni Rub́ı-Barcelóa

aUniversitat de les Illes Balears

Abstract

We analyze the selection of a policy platform by a group of heterogeneous agents to
confront the status quo policy defended by another group in a subsequent contest.
This policy choice results from the interaction between the inter-group effects that
lead to strategic restraint and the intra-group effects due to the heterogeneity among
challengers. We detail the conditions that give rise to polarization or moderation of
the selected challenging policy with respect to what would be selected by this group
in the absence of any struggle.

Keywords: political processes; conflict; group contests; endogenous claims;
intra-group heterogeneity
JEL Classification: D72, D74, C72

1. Introduction

The choice of the common policy platform by the members of a group in a po-
litical competition naturally displays a tension between selecting the policy that
maximizes the probability of winning or selecting the most preferred one.1 If, addi-
tionally, this group is composed of heterogeneous agents, an internal conflict among
its members also comes into play. This occurs, for instance, when a political party
internally chooses an alternative (either a policy or a candidate) to face the oppo-
nents’ choice in a subsequent dispute and also in conflicts among industries, lobbies
or interest groups. This study aims to shed some light on the effect of intra-group
heterogeneity on this classical trade-off of the policy choice when the subsequent
competition is modeled as a contest.

IWe thank Pau Balart, Jozsef Sákovics and conference audiences at PET Conference 2017
and SAET 2017 for their helpful comments. Financial support from the Spanish Ministerio de
Economia y Competitividad and FEDER through grant ECO2015-67901-P (MINECO/FEDER)
is also acknowledged.
∗Corresponding author: Departament d’Economia Aplicada, Universitat de les Illes Balears,

Campus UIB, 07122 Palma, Spain. E-mail: d.cardona@uib.cat
1This is the main trade-off in Wittman’s model (Wittman, 1977).
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We consider the canonical environment of collective choice where the policy space
is one-dimensional and agents have single-peaked preferences. These agents are
organized into two groups: Defenders of the status quo and challengers. Without
loss of generality, it is assumed that challengers prefer policies to the left of the policy
space. These agents are heterogeneous regarding their most preferred policy or peak.
Contrarily, status-quo defenders are homogeneous and they all prefer the extreme-
right policy. A two-stage game is played: First, challengers set a common target-
policy. Second, a contest between challengers and status-quo defenders determines
which of the two policies is finally implemented. In our baseline model, the winning
probability of a group is determined by a contest success function (hereafter CSF)
that depends on the relative size of the group’s aggregate effort. Agents select
their effort individually and non-cooperatively and the cost-effort function is convex.
For most part of the paper, we shall assume that the target-policy of the leftist
group is selected by a representative. The alternative setting in which this policy
is collectively selected by the group is also considered. In these cases, we focus
on processes satisfying the Condorcet Criterion; i.e., procedures that select the
Condorcet winner when it exists.

Our analysis contributes to the literature on endogenous public policies and
contests. Epstein and Nitzan (2004, 2007) show that in a contest to implement
a one-dimensional policy among two groups of homogeneous agents, if individuals’
preferences are strictly concave and differentiable then any group would have incen-
tives to sacrifice some utility by moderating the target-policy because this lessens
competition at the contest stage. This moderation is known in the literature as
strategic restraint.2 The intuition behind this result is that the concavity of prefer-
ences causes that a slight moderation of a group’s target-policy reduces its members’
stake just marginally but it leads to a first-order impact on the opponents’ stake.
This asymmetric effect on stakes translates into an increase of the winning probabil-
ity of the conceding group, which overcomes the marginal utility loss of its members
due to moderation.3 If the group members have heterogeneous preferences, a slight
moderation of a group target-policy may no longer entail a marginal decrease of the
aggregate stake of the conceding group. So, it is not clear whether strategic restraint
will still arise in our setting: A marginal moderation of the challenging policy causes
a reduction of the stake of the status-quo defenders that leads them to lower their
effort (inter-group effect), but it also implies a non-marginal modification of the
aggregate stake of the challengers that leads them to vary their effort (intra-group
effect). The resulting interaction between these two effects on the winning probabil-

2Münster (2006) extends Epstein’s and Nitzan’s (2004) analysis to an all-pay auction contest.
Many papers also follow from that seminal paper to address environmental issues as Heyes (1997),
Liston-Heyes (2001) or Friehe (2013). Strategic restraint is also studied in voting contexts with
policy motivated candidates, e.g. Lindbeck and Weibull (1993).

3Cardona and Rub́ı-Barceló (2016) show that with tent-shaped or linear preferences, moderation
is not obtained and groups would claim their most preferred policies.
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ity, the winning utility and the cost of effort will determine the rise of moderation
or polarization.

In order to disentangle the intra- and inter-group forces that affect the strategic
choice of the target-policy, we first analyze the internal effect in isolation. To this
end, we analyze situations where the target policy selected by the challengers has no
effect on the aggregate effort of the status-quo defenders. Hence, such a choice would
affect the winning probability only through the efforts of the challengers.4 Note that
having non-strategic opponents in the setting of Epstein and Nitzan (2004) would
imply that there is nothing to win from moderation; so, parties would stick to
their preferred policy. Hence, in this setting (with either non-strategic opponents or
asymmetric information), the strategic choice of the target-policy of the challenging
group would exclusively respond to intra-group heterogeneity. This heterogeneity
induces the trade-off between utility and winning probability mentioned previously,
which makes the optimal target-policy of any challenging agent lying in between her
most-preferred policy and that one maximizing the aggregate effort of the group:
Agents reduce their claims in exchange for a larger winning probability. Thus,
intra-group forces push any representative to select a target-policy more moderated
than her most preferred policy only if the latter is sufficiently polarized (more than
the policy maximizing the aggregate effort). Otherwise, the intra-group effect yields
polarization. These results are extended to situations where this policy is collectively
selected by the group when preferences are quadratic. In these cases, there is a
Condorcet-winner policy, which coincides with the optimal target-policy of the player
with the median peak in the group.

When the effort of defenders in the contest depend on the target-policy selected
by the challenging group, both inter- and intra-group effects would determine the
policy choice. In these cases, we show that moderation is always profitable. That
is, any agent in the challenging group prefers a target-policy lying in between the
status quo and her most preferred policy. Therefore, the positive inter-group effects
of moderation dominate any possible negative intra-group effect. This also occurs
when the target-policy collectively selected. In these cases we show that under
quadratic preferences, if the Condorcet-winner policy exists then it cannot be more
polarized than the median’s peak. Interestingly, this result is independent of the
groups’ sizes. Thus, although moderation might reduce the winning utility of many
challengers and increase the utility of a few status-quo defenders, a less extreme
challenging policy is always profitable.

Finally, our results are extended into two directions: First, we consider linear
(instead of convex) costs of effort. Unlike the main framework, in this setting non-
extreme agents will be non-active in the contest; but results are essentially the

4One might interpret this situation either as one in which the defenders do not choose their effort
strategically, or as the situation where the target-policy is internally decided and not observed by
the status-quo defenders, as in Nitzan and Ueda (2016).

3



same. Second, we study an alternative CSF, the linear-difference form, to show how
some of our results crucially depend on this element. In particular, we show that
polarization might arise from the interaction between intra- and inter-group forces
when the most preferred policy of the representative is sufficiently moderate and the
number of status-quo defenders is low enough to limit the inter-group benefits of a
policy moderation. This result also extends to the case in which the target-policy
is collectively selected.

As the choice of a particular policy entails an internal distribution of efforts and
therefore utilities, in our model the selected target-policy can be interpreted as a
sharing rule, which certainly affects the aggregate effort of the group. From this
viewpoint, our study can be related to the literature analyzing the effects of the
internal sharing rule on the outcome of contests (e.g., Nitzan and Ueda, 2011 and
2016; Kolmar and Wagener, 2013 or Balart et al., 2016). However, we differ from
this literature because in our case the choice is less flexible. In another respect, the
selection of a target-policy can be interpreted as the choice of a representative like
in the context of delegation (Baik and Kim, 1997, Schoonbeek, 2004 or Baik, 2007)
but in our framework delegation is partial: The delegate sets the target-policy but
efforts are individually chosen by the members of the group.

The two-stage selection of policy and effort of our setting is closely related to
valence models of political competition (Groseclose, 2001; Aragonès and Palfrey,
2002; Aragonès and Xefteris, 2012). In particular, to those where valence is endoge-
nously determined (Hirsch, 2016; Ashworth and Bueno de Mesquita, 2009; Herrera
et al., 2008; Meirowitz, 2008; Schofield, 2006). We could interpret total effort ex-
erted in the contest as ‘campaign valences’, in the sense of Carter and Patty (2015),
which increase party’s probability of winning the election. However, the sources of
polarization or moderation of policy platforms present in those papers differ from
ours. The first main difference is that polarization in our setting is a consequence
of intra-party forces. Heterogeneity among party members is not considered in this
specific literature, where a candidate rather than a party selects the policy platform.
Only Schofield (2006) recognizes the role activists have in pulling equilibrium pol-
icy toward the extreme, without explicitly accounting for the distribution of party
members. Concerning the inter-party forces, still many other differences can be
found. In our setting, groups are policy motivated parties à la Wittman, in oppo-
sition to the Downsian party approach in Ashworth and Bueno de Mesquita (2009)
and Meirowitz (2008). In our paper moderation is a consequence of the strategic
interaction of effort choices in the contest game (strategic restraint), rather than a
consequence of more or less uncertainty in elections (Wittman, 1983 and Calvert,
1985). In a setting with ideological voters, Herrera et al. (2008) also found that a
policy moderation decreases campaigning costs and increments the winning proba-
bility. However, this increment comes from narrowing the gap between the proposed
policy and the expected median voter position, and not from an strategic interaction
with the opponent.
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The next section presents the basic model and the equilibrium when the effort
level of the status quo defenders is either fixed or endogenous. In Section 3, we
discuss the policy choice when this is made collectively. In Section 4 we analyze the
results under two alternative specifications: a constant marginal cost of effort and
a CSF of linear-difference form. Section 5 concludes.

2. The model

A set of players N with cardinality n must choose the target-policy x ∈ [0, 1] to
compete against the status quo y = 1, defended by the m members of group M .
Preferences of agent j over public policies are represented by uj (x) = 1−θ (|x− j|),
where, with some abuse of notation, j denotes both the peak and an agent with that
peak. Moreover, this function satisfies θ (0) = 0, θ′ (0) = 0 and, for z > 0, θ′ (z) > 0
and θ′′ (z) > 0. We assume that the members of N are (possibly) heterogeneous
and have their peaks in [0, 1/2] whereas all the members of M are identical and
have their peak at 1. Some of our results are obtained under the specification
θ (|x− j|) = (x− j)2. In this case, preferences are said to be quadratic.

Once the target-policy x has been settled, group N exerts an aggregate effort A
to increase the probability of implementing x in the contest against the status quo.
Let B denote the aggregate effort exerted by group M to defend the status quo.
We consider a linear impact function, so that A is the result of adding up all the
individual efforts aj for all j ∈ N . Similarly, B =

∑
j∈M bj, where bj denotes the

individual effort of an agent j ∈ M . The probability that policy x is implemented
depends on the two aggregate efforts according to the function p(A,B), referred as
the contest success function (CSF henceforth). With the complementary probability,
the status quo y = 1 remains. The CSF is assumed to be homogeneous of degree
0 so that p (A,B) = f (A/B), satisfying (additionally) f ′ > 0 and f ′′ < 0. Efforts
are costly. Particularly, the cost function is assumed to be quadratic. Agents’
preferences over public policies and costs of effort are assumed to be separable so
that the utility function can be written as

vj (x, aj) = uj (x)− a2
j/2.

To determine the policy selected by the group we solve the game backwards.
First, for any x ∈ [0, 1], we find the Nash equilibrium of the contest game, where
agents select their efforts individually. Second, we determine the target-policy se-
lected by the group. For now, we assume that the group has a representative r ∈ N
who has full authority to select such a policy. Let x∗r denote this policy, that is, the
optimal target-policy selected by agent r in response to the best reply of the agents
in the second stage of the game. In Section 3, we consider that the target-policy
selected by the group is the result of some internal collective decision process that
satisfies the Condorcet criterion.
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As in Epstein and Nitzan (2004), this setting will allow to analyze how the
existence of a subsequent contest affects the strategic choice of a public policy (inter-
group effect). But additionally, this choice can also be affected by the heterogeneity
of the group (intra-group effect), as the present framework aims to show. In order
to isolate the latter effect from the former, we will start by setting a fixed B = B̄.5

2.1. Non-strategic opponent (NSO)

In the contest stage, for any x ∈ [0, 1], agent j ∈ N chooses aj to maximize

vj(x, aj) = f((A−j + aj) /B̄)uj(x) +
[
1− f

(
(A−j + aj) /B̄

)]
uj(1)− a2

j/2

= f
(
(A−j + aj) /B̄

)
Dj (x) + uj (1)− a2

j/2

where A−j = A − aj and Dj (x) = |uj (x)− uj (1)| denotes the stake of agent j.
Hence, the optimal effort level a∗j satisfies

f ′
((
A−j + a∗j

)
/B̄
) 1

B̄
Dj (x)− a∗j ≡ 0. (1)

Adding up this condition for all players in N , we implicitly obtain the equilibrium
aggregate effort of group N , A∗ = A

(
x, B̄

)
, as

f ′
(
A∗/B̄

) 1

B̄
DN (x)− A∗ ≡ 0. (2)

where DN(x) =
∑

j∈N Dj (x).6

Note that, in equilibrium

a∗j/A
∗ =

Dj (x)

DN (x)
and a∗j/a

∗
i =

Dj (x)

Di (x)
(3)

for all i, j ∈ N . Due to the strict convexity of effort costs, all agents will exert a
positive effort. In this sense, there are no strong free-riders. Nevertheless, exerting
effort generates positive externalities on the other members of the group.

Defining Q̄ (x) = A∗/B̄,7 condition (2) can be rewritten as

A∗ = f ′
(
Q̄ (x)

) (
1/B̄

)
DN (x)

5An alternative interpretation of this model with a fixed B = B̄ is a standard public good
provision where p

(
A, B̄

)
is the ‘size’ of the public good and uj (x) − uj (1) is the j’s marginal

valuation of this public good when located at x. As commented in the Introduction, this setting
also adapts to a context where only the members of N observe the target policy.

6As f ′′
(
A/B̄

)
< 0 it is immediate that the solution is unique.

7Indeed, we have that A
(
x, B̄

)
and Q̄

(
x, B̄

)
but we omit the parameter B̄ to simplify the

exposition.
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and therefore

Q̄ (x) = f ′
(
Q̄ (x)

) 1

B̄2
DN (x) . (4)

Differentiating (4) with respect to x yields

f ′′
(
Q̄ (x)

) 1

B̄2
DN (x) Q̄′ (x) + f ′

(
Q̄ (x)

) 1

B̄2
D′N (x)− Q̄′ (x) = 0,

so that

Q̄′ (x) =
Q̄ (x)

1− f ′′
(
Q̄ (x)

) (
1/B̄2

)
DN (x)

D′N (x)

DN (x)

=
f ′
(
Q̄ (x)

)
Q̄ (x)

f ′
(
Q̄ (x)

)
− f ′′

(
Q̄ (x)

)
Q̄ (x)

D′N (x)

DN (x)
.

As f ′ (Q) > 0 and f ′′ (Q) ≤ 0, it can be concluded that

Q̄′ (x) ≥ 0⇐⇒ D′N (x) ≥ 0.

Note that DN (x) is a sum of concave functions in x, which is (uniquely) maximal
at x satisfying

∑
j∈N u

′
j (x) = 0.8 Therefore, moving the target-policy towards x

increases both the aggregate effort of group N and, given that M is non-strategic,
its winning probability.

In addition to the effect on the expected utility of any agent j ∈ N transmitted
via the winning probability, there are two more aspects that influence the optimal
target-policy choice of any particular representative. One is the direct utility she
would obtain from the implementation of that policy; and the other is the cost of the
effort she would exert in (the equilibrium of) the subsequent contest. The following
proposition shows that the interaction among these three forces leads the optimal
policy of any representative r ∈ N , x∗r, to lie in between her peak r and x. All proofs
are in the Appendix.

Proposition 1. If r 6= x then (x∗r − r) (x∗r − x) < 0. Otherwise, x∗r = r = x.

The intra-group forces caused by the heterogeneity of group N push any repre-
sentative to move the target-policy away from her peak r towards x because this
generates two positive effects on her that overcome the reduction of her gain from
winning the contest. These positive effects are: (i) a cost-effort saving because
a∗r decreases as x moves from r towards x,9 and (ii) a stronger incentive of her

8For quadratic preferences x is the mean of the peaks.
9As f ′′ (Q) < 0, it is immediate from (1) that Q′ (x) > 0 and D′r (x) < 0 imply that a∗r must

also decrease in x when moving from r towards x, for any r ∈ N .
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group members’ to engage in rent-seeking efforts and, consequently, a higher win-
ning probability. Thus, depending on the relative position of r with respect to x, the
target-policy of group N might differ from what would be selected in the absence of
the subsequent contest; i.e., the peak of its representative. Specifically, the existence
of the contest stage would induce moderation when r < x and polarization when
r > x.

Note that if the members of group M condition strategically their efforts on the
target-policy selected by group N , these intra-group forces would interact with the
inter-group effect that is analyzed in Epstein and Nitzan (2004) or Cardona and
Rub́ı-Barceló (2016). We address the analysis of this interaction next.

2.2. A strategic opponent (SO)

When B is strategically selected by the members of group M who observe the
target-policy selected by group N , then the choice of this policy by the representative
would balance the intra-group forces described above and the following inter-group
effect: A moderation of the target-policy of group N would decrease the stake of
the opponents and this would reduce their incentives to exert effort in the contest.
Therefore, when r < x intra and inter-group forces are aligned to induce a moder-
ation of the target-policy with respect to the representative’s peak r. Otherwise,
when r > x these two forces affect the optimal target-policy choice in opposite di-
rections: The inter-group effect would move this policy towards moderation whereas
the intra-group effects would induce polarization. The analysis of this conflict will
focus our attention throughout this section.

For any x ∈ [0, 1], any agent j ∈M chooses an effort bj to maximize

vj(x, bj) = [1− f (A/ (B−j + bj))]Dj (x) + uj (x)− b2
j/2,

where B−j = B − bj. Hence, the optimal individual effort b∗j satisfies

f ′
(
A/
(
B−j + b∗j

)) A(
B−j + b∗j

)2Dj (x)− b∗j ≡ 0.

Aggregating for all agents j ∈M , we implicitly obtain the effort B, as

f ′ (A/B)
A

B2
DM (x)−B ≡ 0. (5)

where DM(x) =
∑

j∈M Dj (x). From (1) (but with a non-fixed B) and (3), a∗j can
be expressed as a function of Q (x) ≡ A (x) /B (x) as follows

a∗j = aj (x) =

[
f ′ (Q (x))Q (x)Dj (x)

Dj (x)

DN (x)

]1/2

, (6)
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and from (2) (but with a non-fixed B) and (5), the same can be done for equilibrium
efforts A∗ and B∗, as follows

A∗ = A (x) = [f ′ (Q (x))Q (x)DN (x)]
1/2

, (7)

B∗ = B (x) = [f ′ (Q (x))Q (x)DM (x)]
1/2

. (8)

From these two expressions the following is obtained:

Q (x) =

(
DN (x)

DM (x)

)1/2

. (9)

This puts forward the importance of group sizes in determining the winning prob-
ability of the challengers. Nevertheless, moderating the target-policy increases this
probability independently of group sizes, as the next result shows.

Lemma 1. Q′ (x) > 0 .

When a moderation of the representative agent r involves to bring the target-
policy closer to x, this moderation induces a higher aggregate effort of the chal-
lengers (intra-group effect) and a lower aggregate effort of the status-quo defenders
(inter-group effect), that unequivocally increase the winning probability of group N .
However, when a moderation involves to move the target-policy away from x, the
aggregate effort of both groups will be reduced. The previous lemma shows that, in
this case, the positive inter-group effect of a target-policy moderation on the winning
probability of group N offsets the negative intra-group effect. And this holds even
for n/m arbitrarily large, so that this moderation increases the winning probability
of the challenging policy even if the number of agents that originate the (possibly)
negative intra-group effect is much higher than the number of agents causing the
inter-group effect.

In general, the representative’s incentives to moderate the target-policy should
be interpreted as a consequence of the interaction among the following three effects.
By moving the target-policy, the representative affects (i) her utility from winning
the subsequent contest, (ii) as the stakes are also modified, all agents’ incentives
to engage in rent-seeking efforts and, consequently, the winning probability of her
group, and (iii) her effort exerted in the contest. Lemma 1 shows that effect (ii) is
always positive in case of a moderation. Moreover, regarding effect (i), the represen-
tative’s utility from winning the contest is increased by a moderation if this implies
moving the target-policy towards the representative’s peak and reduced otherwise.
The interaction of those two effects with (iii) determines the relative location of the
optimal target-policy of the representative x∗r, as specified next.

Proposition 2. x∗r > min {x, r}. Moreover, under quadratic preferences x∗r > r.

9



The proof of this Proposition shows that when x ≤ min {x, r}, the two positive
effects (i) and (ii) of a target-policy moderation from x are not offset by (iii).
However, when x ∈ [x, r] this can only be proved under quadratic preferences: For
the general set of preferences, a target-policy moderation might involve a negative
effect (iii) sufficiently high to disincentivize moderation.10 Finally, when x ∈ [r, x] a
target-policy moderation implies that effect (i) is negative, so this moderation will
only take place if this effect is sufficiently small.

This result reinforces Epstein and Nitzan (2004) as strategic restraint still arises
after adding the forces caused by intra-group heterogeneity to the inter-group effects
analyzed in that paper. Moreover, this is independent of the groups’ sizes. When
the representative is relatively extreme (r < x), both intra and inter-group effects
induce moderation. Thus, the optimal target-policy would be unequivocally larger
than the representative’s peak. Nevertheless, when the representative is relatively
moderated (r > x), intra-group forces would lead to polarization, so in that case
the interaction with an strategic opponent is key for having moderation.

The comparison between the NSO and the SO cases is not direct because it
would crucially depend on the exogenous value B̄. A reasonable B̄ for comparison
purposes would satisfy the consistency requirement used in Nitzan and Ueda (2016).
According to this requirement, B̄ would correspond to the addition of the best
responses of group M ’s members to the equilibrium effort level A∗ = A(x∗, B̄),
where x∗ is the equilibrium policy choice made by the representative of N when she
considers that group M members would not react to x, as if they were not able to
observe it. Using this B̄ in the NSO case, Table 1 displays some numerical examples
illustrating this comparison. In these simulations preferences are assumed to be
quadratic and the CSF has a Tullock form p(A,B) = A/(A+B), n = 21, r = 0.001
and x = 0.2386).11

x∗r P (x∗r) (A;B)

m = 15
NSO
SO

0.0824
0.2799

0.4900
0.5554

(1.7070; 1.7766)
(1.7312; 1.3859)

m = 21
NSO
SO

0.0883
0.2990

0.4501
0.5198

(1.7017; 2.0786)
(1.7377; 1.6050)

m = 25
NSO
SO

0.0913
0.3088

0.4297
0.5013

(1.6946; 2.2491)
(1.7371, 1.7280)

Table 1: NSO case vs. SO case (n = 21, r = 0.001, x = 0.2386).

In all of them, there is always more moderation under the SO case. Moreover
group N (M) exerts more (less) effort in the equilibrium of the SO case so that the

10We are not conclusive at this point, as we do not have any example where this happens.
Although ar (x) /A (x) increases in those cases, it is usually the case that ar (x) decreases as well.

11It is worth noting that equilibria are fully characterized by the set of parameters (n,m, x, r).
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winning probability of N is higher in this case. This suggests that it is in the interest
of group N ’s members to make public their chosen target-policy if unobservable.

3. Collective choice of the target-policy

Until now, we considered an exogenously determined representative of group N
selecting the target-policy of the group.12 Now, we assume that the target-policy
is collectively selected by the members of N following a process that satisfies the
Condorcet Criterion.13 The existence of a Condorcet-winner policy (denoted by x∗w)
would contribute a rationale for the assumption of the exogenous representative in
our previous setting. This existence is guaranteed when all individuals have single-
peaked preferences (Median Voter Theorem, Black, 1958) or when the utilities of
any two individuals satisfy single-crossing (Representative Voter Theorem, Roth-
stein, 1991). Additionally, in the latter case, the Condorcet winner corresponds to
the choice of the median player. Let d denote both the median of N (and her peak).
Although we are not able to show that in our model agents’ indirect utility func-
tions satisfy single-peakedness, they satisfy single-crossing in the NSO case when
preferences are quadratic. Consequently:

Proposition 3. (NSO case) Under quadratic preferences, the optimal target-policy
of the median player (x∗d) is the Condorcet winner (x∗w).

Proposition 1 can be applied here to conclude that the interaction among intra
and inter-group forces leads the target-policy of group N (i.e. the Condorcet-winner
policy in this setting) to lie in between the peak of the median agent d and x. So,
when compared with the policy selected in the absence of the contest (d), there is
moderation when d < x and polarization when d > x.

Although we are not able to provide a general proof of existence of a Condorcet-
winner policy in the SO case, we obtained a ‘partial single-crossing’ property (Lemma
5 in Appendix B) that allows us to characterize its relative location in case of exis-
tence.

Proposition 4. (SO case) Under quadratic preferences, if a Condorcet-winner pol-
icy exists then it cannot be more polarized than x∗d.

From the second part of Proposition 2 we already know that under quadratic pref-
erences the optimal target-policy for any player is more moderated than her peak,

12Nitzan and Ueda (2016) consider a representative that maximizes the aggregate surplus of the
group.

13Condorcet winners are a robust prediction of the group’s decision, particularly “for situations
in which people can act in concert, with various subsets of people coordinating their actions to
form coalitions [...] for unilaterally insuring an improvement in the welfare of all of its mem-
bers”(Ordeshook, 1980).
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so that x∗d > d. Consequently, the last result implies that, whenever a Condorcet
winner exists, the contest induces group N to collectively select a more moderated
target-policy than what would be selected otherwise (d). As in the case with an ex-
ogenously given representative, the interaction between intra and inter-group forces
would lead to strategic moderation.

In spite of not having a general proof of existence of a Condorcet-winner policy,
in all our numerical simulations (i) indirect utilities are single-peaked and (ii) there
is a positive monotonicity between agents’ peaks and their optimal target policies.
Table 2 displays some of these simulations in which preferences are assumed to
be quadratic, the CSF has a Tullock form p(A,B) = A/(A + B), d = 1/4 and
x = 71/300.

j = 0 j = 1/10 j = 1/4 j = 1/3 j = 1/2
n = 25,m = 2 0.1600 0.2203 0.3254 0.3903 0.5304
n = 15,m = 2 0.1889 0.2436 0.3414 0.4028 0.5375
n = 5,m = 2 0.2682 0.3075 0.3848 0.4368 0.5570
n = 5,m = 6 0.3313 0.3637 0.4291 0.4741 0.5810

Table 2: x∗j for different relative group sizes with d = 1/4 and x = 71/300.

Notice that the optimal target-policy of any individual is more moderated than
her peak, as announced by Proposition 2. Moreover, as the two properties mentioned
above hold, the Condorcet-winner policy x∗w exists and it is equal to x∗d. Finally, this
table illustrates that the magnitude of moderation does depend upon the relative
group size: The smaller is n/m the larger will be the moderation of any agent j
with respect to her peak, i.e. the larger is x∗j − j. The reason is that, for a bigger M
inter-group forces are stronger: The gains from moderating the challenging target-
policy in terms of the winning probability are more prominent, as this moderation
will cause a reduction of the effort exerted by more status-quo defenders.

4. Further specifications

In this section, we extend the model in two directions to analyze the robustness
of our results. Specifically, these variations are considered: linear cost function and
linear-difference CSF.

4.1. Linear costs

The case of linear costs is particularly illustrative because in these cases the total
effort of a group depends only on the highest individual stake. In homogeneous
groups, this means that the group effort is independent of the size of the group
whereas in heterogeneous groups, this implies that only the extreme agents would
exert a positive effort. Without loss of generality, we assume that there is an agent
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at 0. Hence, the effort of a group N would depend only on the stake of this extreme
member(s). Specifically, A solves

f ′ (A/B)
1

B
D0 (x)− 1 = 0. (10)

Similarly, B solves

f ′ (A/B)
A

B2
D1 (x)− 1 = 0,

where D1 is the stake of any member of M that, in our setting, is located at 1. From
these two equations, we obtain that

Q (x) =
A (x)

B (x)
=
D0 (x)

D1 (x)
=⇒ Q′(x) = Q(x)

(
D′0 (x)

D0 (x)
− D′1 (x)

D1 (x)

)
.

Thus, the optimal target-policy of any representative r ∈ N , r 6= 0, satisfies

0 = f ′ (Q (x))Q′ (x)Dr (x) + f (Q (x))D′r (x)

= f ′ (Q (x))Q (x)

(
D′0 (x)

D0 (x)
− D′1 (x)

D1 (x)

)
Dr (x) + f (Q (x))D′r (x) .

The convexity of θ implies that
D′

0(x)

D0(x)
− D′

1(x)

D1(x)
> 0 for x ≤ 1/2. Hence, as

r ≤ 1/2 this implies that D′r(x
∗
r) < 0 so that x∗r > r for all r ∈ N .14 That is,

any representative of group N will choose a target-policy more moderated than her
own peak.15 As in the baseline model, the effect of the inter-group forces that push
the representative to moderate the target-policy in order to increase the winning
probability of her group predominate over the intra-group effects, which would lead
to polarization.16 The difference with respect to the quadratic-costs case is that
now a moderation does not alter the cost of effort of any representative r > 0, as
all the effort will be exerted by the extreme member(s). Thus, for a target-policy
moderation to be beneficial it suffices that the benefits from increasing the winning
probability offset the utility loss from choosing a less preferred target-policy, as it
actually happens.

In case that the target-policy of N is collectively selected by its members, the
existence of a Condorcet-winner policy is not guaranteed, as in the case of quadratic

14If r = 0 then this agent would possibly exert a positive effort. In these cases, the positive
effects of moderation would be reinforced.

15Unlike the quadratic-cost case, now it can be proved that x∗r > r for the general set of prefer-
ences and not only for quadratic preferences.

16Specifically, when inter-group effects are neutralized, i.e. in the NSO case, x∗0 = 0 and x∗r ∈
(0, r) for any r 6= 0 (see Appendix C). As in the main model, the intra-group forces arise from the
trade-off faced by the representative between maximizing her utility in case of winning (at x = r)
and maximizing the winning probability (at x = 0, under linear costs).
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costs. Again, we are able to obtain a ‘partial single-crossing’ property17 that allows
us to characterize the relative location of a potential Condorcet-winner policy. In
particular, that property implies that x∗d would be preferred to any x < x∗d for any
agent l ≥ d when d 6= 0.18 Therefore, if a Condorcet-winner policy exists then it
cannot be more polarized than x∗d, as in our main setting. Moreover, since x∗j > j
for all j as showed above, it can be concluded that when a Condorcet-winner exists
then it should be more moderated than the median’s peak. Thus, considering linear
costs of effort does change only slightly our qualitative results. The only remarkable
difference with respect to our baseline model is that (as only extreme agents exert
positive effort) single-crossing might fail because x∗0 > x∗j for some j ∈ N . This
imply that, under linear costs of effort, the Condorcet-winner policy can be more
moderated than x∗d as illustrated by the examples displayed in Figure 1. In these
examples, preferences are assumed to be quadratic, the CSF has a Tullock form
p(A,B) = A/(A+B) and m = 1.

4.2. Linear-difference Contest Success Function

We next consider situations where the winning probability of group N is given
by p(A,B) = 1/2 + s(A − B), for appropriate s > 0.19 Cardona and Rub́ı-Barceló
(2016) analyzed this setting for homogeneous groups and linear preferences and
found that the equilibrium target policies were affected by the group size. In the
present setting with non-linear preferences and heterogeneous groups, the choice of
a specific target-policy would affect the agents’ stakes differently, so the extension
of those results is not immediate. In this section, the analysis focuses on the case of
quadratic preferences.

By backwards induction, we start from the contest stage. There, the optimal
effort level a∗j satisfies

sDj − a∗j = 0.

Thus, A∗ = sDN . Then, the indirect utility function of a representative agent r ∈ N
is

Vr(x) = P (x)Dr (x) + ur (1)− (sDr(x))2 /2,

17See Appendix C.
18If d = 0 then it is immediate that the Condorcet-winner policy would be x∗0.
19In general, probabilities in the linear difference-form CSF are such that

p(A,B) = max {0,min [1/2 + s(A−B), 1]} .

For some values of s, a pure-strategy equilibrium fails to exist. Che and Gale (2000) characterize
the set of mixed strategy equilibria in contests between two players and linear costs of effort. To
our knowledge there is no characterization of such equilibria in our setting. In this paper, we
will focus on pure-strategy equilibria. Hence, restricting the parameter set would be required to
guarantee existence.
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Figure 1: Quadratic vs. Linear costs (m = 1).
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where P (x) = p (A (x) , B (x)).20 Following similar steps, we obtain that B∗ =
sDM . Thus, P = 1/2 + s2 (DN −DM) and P ′ = s2 (D′N −D′M). Let x̂ = nx+m

n+m
.

Then,

Proposition 5. Under quadratic preferences and the linear-difference CSF, x∗r ≥ r
iff r ≤ x̂, for any r ∈ N .

Unlike our previous results (obtained with a CSF homogeneous of degree zero),
under the linear-difference CSF the representative will optimally choose a target-
policy which is more moderated than her peak only when she is sufficiently extreme,
i.e., when r < x̂. Otherwise, there will be polarization.21 Notice that the threshold
x̂ is the weighted average between x and 1 (the two policies that maximize DN and
DM , respectively) where weights are the relative sizes of each group. So, for a given
r, the target-policy of N will be more polarized than its representative’s peak only
when r > x and the relative size of the opposite group (m) is so low that r > x̂.
Intuitively, in a contest against a sufficiently small group M , the positive inter-group
effects of a target-policy moderation that lower the equilibrium effort of M are not
enough to compensate the negative consequences of this moderation.

When the target-policy is collectively selected by the group members, the exis-
tence of a Condorcet-winner policy is guaranteed by the following result:

Lemma 2. Under quadratic preferences and the linear-difference CSF, the indirect
utility is single-peaked.

This result guarantees the existence of a Condorcet winner policy x∗w (Median
Voter Theorem, Black, 1958).22 The following result characterizes the location of
this policy.

Proposition 6. Under quadratic preferences and the linear-difference CSF, x∗w ≥ d
iff d ≤ x̂.

In contrast with Proposition 4, under a linear-difference CSF the Condorcet-
winner policy might be more polarized than the median’s peak. This happens when
such a median is sufficiently moderate; i.e., when d > x̂. As the threshold x̂ de-
pends positively on the relative size of the opposite group,23 the inter-group effect
is positively affected by m/n. So, polarization is obtained only when the median is
relatively moderated.

Although the general proof of existence of a Condorcet-winner policy in this
case, single-crossing is not generally proved. In spite of that, in all our numerical

20Argument x will be omitted if no confusion arises.
21If only intra-group effects are considered, as in the NSO case, the result is similar but with x

instead of x̂ (see Appendix E).
22This result also holds for the NSO case (see Appendix E).
23In the NSO case, the result is similar but with x instead of x̂ (see Appendix E).
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simulations there is a positive monotonicity between agents’ peaks and their optimal
target policies, as in the main model. Table 3 displays some of these simulations in
which preferences are assumed to be quadratic, the CSF is p(A,B) = 1/2+s(A−B),
s = 1/4, d = 1/4 and x = 71/300.

j = 0 j = 1/10 j = 1/4 j = 1/3 j = 1/2 x̂
n = 15,m = 2 0.1745 0.2088 0.2796 0.3311 0.4622 0.3265
n = 5,m = 2 0.1987 0.2356 0.3103 0.3631 0.4932 0.4548
n = 5,m = 10 0.4665 0.4756 0.4974 0.5158 0.5753 0.7456

Table 3: x∗j for different relative group sizes with d = 1/4, s = 0.25, and x = 71/300.

Due to this monotonicity, the Condorcet-winner policy is equal to x∗d in these
cases. Notice that the optimal target-policy of any individual is more moderated
than her peak only when j < x̂ (non-bold cases in the table), as announced by
Proposition 5. In the remaining cases, agent j would select a target-policy more
polarized than her peak. Finally, this table illustrates that the magnitude of the
moderation does depend upon the relative group size, as in the main setting.

5. Conclusion

We studied the contest between two groups of agents when one of them tries to
modify the status quo. Previous to the contest challengers must set their target-
policy. As showed in Epstein and Nitzan (2004), the choice of this target-policy
affects the challengers’ expected utility through three different channels: (i) their
effort costs, (ii) their equilibrium winning probability and (iii) their equilibrium
winning utility. The novelty is that in our setting part of these effects are due
to the heterogeneity among challengers: We showed that when the probability of
implementing the selected policy depends only on the efforts of the group, so the
strategic effect acting in Epstein and Nitzan (2004) is neutralized, then the choice of
the optimal target-policy solves the trade-off between maximizing the winning util-
ity of the representative (at her most preferred policy) and maximizing her winning
probability (at the policy where the aggregate stake of the group in the contest is
maximized).24 As a result, the relative location of these two policies will determine
whether the optimal policy will be more polarized or moderated than the represen-
tative agent’s peak. When the efforts of the opposite group are strategically chosen
and the CSF is homogeneous of degree zero, we showed that the inter-group posi-
tive effects of moderation always offset the intra-group effects due to heterogeneity,
so that the optimal target-policy of any representative is always more moderated

24We can interpret this setting as a moral hazard problem in the context of a public good
provision with non-transferable utility where the size of the public good depends on the aggregate
effort of the group members.
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than its peak. This is independent of the groups’ sizes and of how this moderation
alters the aggregate surplus of the group. These results hold with either convex or
linear costs of effort. However, when the CSF has the linear-difference form ana-
lyzed in this paper, the optimal policy can be either more moderated or polarized
than the representative’s peak. Polarization will arise when the representative of the
challenging group is sufficiently moderate and the group defending the status-quo
is sufficiently small because in this case the inter-group positive effects of modera-
tion will not offset the intra-group forces. The paper also analyzes the case where
the challenging group has not an exogenous representative and the target-policy is
collectively selected. In this case, the heterogeneity among challengers imply that
there is no unanimous consent on the best policy to lobby for in the subsequent
contest. The results are similar to those obtained in the main setting of the paper:
any Condorcet winner policy must always imply a moderation with respect to the
median’s peak under a CSF homogeneous of degree zero either with convex or linear
costs of effort but not under the linear-difference CSF. In this case, the Condorcet
winner policy that will be confronted to the opposite group policy might be more
polarized than the median’s peak.
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Appendix A. Proofs of results in Section 2

Proof of Proposition 1. Given Q̄ (x) and a∗r = ar (x) for all r ∈ N , the indirect
utility function of any representative r ∈ N can be written as,

Vr (x) = f
(
Q̄ (x)

)
Dr (x) + ur (1)− a2

r (x)

2
.

Differentiating this function yields

V ′r (x) = f ′
(
Q̄ (x)

)
Dr (x) Q̄′ (x) + f

(
Q̄ (x)

)
D′r (x)− ar (x) a′r (x) .

Using (1), we obtain

a′r (x) = f ′′
(
Q̄ (x)

) 1

B̄
Dr (x) Q̄′ (x) + f ′

(
Q̄ (x)

) 1

B̄
D′r (x) .

Thus,

V ′r (x) = f ′
(
Q̄ (x)

)
Dr (x) Q̄′ (x) + f

(
Q̄ (x)

)
D′r (x)

− ar (x)

[
f ′′
(
Q̄ (x)

) 1

B̄
Dr (x) Q̄′ (x) + f ′

(
Q̄ (x)

) 1

B̄
D′r (x)

]
= ar (x) B̄Q̄′ (x) + f

(
Q̄ (x)

)
D′r (x)

− ar (x)

[
f ′′
(
Q̄ (x)

) 1

B̄
Dr (x) Q̄′ (x) + f ′

(
Q̄ (x)

) 1

B̄
D′r (x)

]
= ar (x) B̄

[
1− f ′′

(
Q̄ (x)

) 1

B̄2
Dr (x)

]
Q̄′ (x)

+

[
f
(
Q̄ (x)

)
− ar (x) f ′

(
Q̄ (x)

) 1

B̄

]
D′r (x) .

From the concavity of f (Q) and the fact that f (Q) ∈ [0, 1], it is immediate that
f (Q) > f ′ (Q)Q for all Q > 0. Hence,

f
(
Q̄ (x)

)
− f ′

(
Q̄ (x)

) ar (x)

B̄
> f

(
Q̄ (x)

)
− f ′

(
Q̄ (x)

)
Q̄ (x) > 0.

Therefore, as 1−f ′′
(
Q̄ (x)

)
1
B̄2Dr (x) > 0, we obtain that any optimal solution must

satisfy Q̄′ (x)D′r (x) < 0. Moreover, when r < x then (i) Q̄′ (x) > 0 and D′r (x) ≥ 0
for all x ≤ r and (ii) Q̄′ (x) ≤ 0 and D′r (x) < 0 for all x ≥ x. Similarly in cases
where r > x. Thus, the statement of the proposition follows.

Proof of Lemma 1. First, we show that
∣∣∣D′

N (x)

DN (x)

∣∣∣ < ∣∣∣D′
M (x)

DM (x)

∣∣∣. Given that∣∣∣∣D′N (x)

DN (x)

∣∣∣∣ =

∣∣∣∣∣
∑

j∈N D
′
j (x)∑

j∈N Dj (x)

∣∣∣∣∣ ≤
∑

j∈N θ
′ (|x− j|)∑

j∈N θ (|1− j|)−
∑
θ (|x− j|)

,∣∣∣∣D′M (x)

DM (x)

∣∣∣∣ =
mθ′ (|1− x|)
mθ (|1− x|)

,
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then ∣∣∣∣D′N (x)

DN (x)

∣∣∣∣− ∣∣∣∣D′M (x)

DM (x)

∣∣∣∣ ≤ 1

K

{
θ (|1− x|)

∑
j∈N

θ′ (|x− j|)

−θ′ (|1− x|)
∑
j∈N

[θ (|1− j|)− θ (|x− j|)]

}
,

where K ≡
(∑

j∈N θ (|1− j|)−
∑

j∈N θ (|x− j|)
)
θ (|1− x|) > 0. From the convex-

ity of θ, we have that

θ (|1− j|)− θ (|x− j|)
1− x

> θ′ (|x− j|) for all j ∈ N , and

θ (|1− x|)
1− x

< θ′ (|1− x|) for all j ∈M .

Hence,∣∣∣∣D′N (x)

DN (x)

∣∣∣∣− ∣∣∣∣D′M (x)

DM (x)

∣∣∣∣
<

1

k

{
θ (|1− x|)

∑
θ′ (|x− j|)− θ′ (|1− x|) (1− x)

∑
θ′ (|x− j|)

}
<

1

k

{
θ′ (|1− x|) (1− x)

∑
θ′ (|x− j|)− θ′ (|1− x|) (1− x)

∑
θ′ (|x− j|)

}
= 0.

Given that

Q′ (x) =
1

2
Q−1 (x)

[
D′N (x)

DM (x)
− DN (x)D′M (x)

D2
M (x)

]
=

1

2
Q (x)

[
D′N (x)

DN (x)
− D′M (x)

DM (x)

]
and that D′M (x) < 0, the claim follows.

Proof of Proposition 2. Differentiating the indirect utility function of any represen-
tative r,

Vr (x) = f (Q (x))Dr (x) + ur(1)− 1

2
a2
r (x) ,

where ar (x) is given by (6) we obtain

V ′r (x) = f ′ (Q (x))Q′ (x)Dr (x) + f (Q (x))D′r (x)

−1

2
f ′′ (Q (x))Q (x)Q′ (x)

D2
r (x)

DN (x)
− 1

2
f ′ (Q (x))Q′ (x)

D2
r (x)

DN (x)

−f ′ (Q (x))Q (x)
Dr (x)

DN (x)
D′r (x) +

1

2
f ′ (Q (x))Q (x)

D2
r (x)

D2
N (x)

D′N (x) .

22



For x ≤ r, D′r(x) ≥ 0. Moreover from the concavity of f , f (Q (x)) > f ′ (Q (x))Q (x).
Consequently,

f (Q (x))D′r (x)− f ′ (Q (x))Q (x)

(
Dr (x)

DN (x)

)
D′r (x) ≥ 0

Hence, using f ′′ (Q (x)) < 0 and Q′ (x) > 0 (see Lemma 1),

V ′r (x) > f ′ (Q (x))Q′ (x)Dr (x)− 1

2
f ′ (Q (x))Q′ (x)

(
D2

r (x)

DN (x)

)
+

1

2
f ′ (Q (x))Q (x)

(
D2

r (x)

D2
N (x)

)
D′N (x)

= f ′ (Q (x))Q′ (x)Dr (x)

[
1− 1

2

(
Dr (x)

DN (x)

)]
+

1

2
f ′ (Q (x))Q (x)

(
D2

r (x)

D2
N (x)

)
D′N (x) . (A.1)

It is immediate that this derivative is positive when D′N (x) ≥ 0. Thus, x∗r
> min {x, r}, implying x∗r > r when x ≥ r.

To complete the proof, let consider x < r and x ∈ (x, r] so that D′N (x) < 0 and
D′r (x) ≥ 0.

From (A.1), and using Q′ (x) = 1
2
Q (x)

(
D′

N (x)

DN (x)
− D′

M (x)

DM (x)

)
we obtain

V ′r (x) >
1

2
Q (x)

(
D′N (x)

DN (x)
− D′M (x)

DM (x)

)
f ′ (Q (x))Dr (x)

[
1− 1

2

(
Dr (x)

DN (x)

)]
+

1

2
f ′ (Q (x))Q (x)

(
D2

r (x)

D2
N (x)

)
D′N (x) .

Thus,

V ′r (x) >
1

4
Q (x) f ′ (Q (x))

Dr (x)

D2
N (x)DM (x)

R (x) ,

where

R (x) = D′N (x)DM (x) [2DN (x) +Dr (x)]−DN (x)D′M (x) [2DN (x)−Dr (x)] .
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Under quadratic preferences,

R (x)

2mn (1− x)3 = − (x− x) (2n− 2r + x− 4nx+ 2nx+ 1)

+ (1 + x− 2x) (−x+ 2r + 2n− 4nx+ 2nx− 1)

= (1 + x− 2x) (2n− 4nx+ 2nx− [1 + x− 2r])

− (x− x) (2n− 4nx+ 2nx+ [1 + x− 2r])

= [(1 + x− 2x)− (x− x)] [2n− 4nx+ 2nx]

− [1 + x− 2r] [(1 + x− 2x) + (x− x)]

= 2n (1− x) (1 + x− 2x)− (1 + 2x− 3x) (1 + x− 2r)

> 2n (1− x) (1 + x− 2r)− (1 + 2x− 3x) (1 + x− 2r)

= [2n (1− x)− (3− 3x) + 2− 2x] (1 + x− 2r)

= [(2n− 3) (1− x) + 2 (1− x)] (1 + x− 2r) > 0.

Therefore R (x) > 0 implying V ′r (x) > 0 and the claim follows.

Appendix B. Proofs of results in Section 3

Proof of Proposition 3. We start by proving two preliminary results. Let j ∈ N .

Lemma 3. Any x ∈ (0, x)∪ (d, 1) is majority blocked, either by x or by d.

Proof. It follows immediately from the proof of Proposition 1 that, if x ≤ min {j, x}
then V ′j (x) > 0 and V ′j (x) < 0 for all x ≥ max {j, x} and j ∈ N . This implies that
either j or x is preferred by j to any x ∈ (0, x)∪ (j, 1) and the claim follows from
the definition of the median member, d.

We now define,

H (x, j) = Vd (x)− Vj (x) =

f
(
Q̄ (x)

)
[Dd (x)−Dj (x)]− 1

2

[
f ′
(
Q̄ (x)

)
B̄

]2 [
D2

d (x)−D2
j (x)

]
.

We first prove the following lemma,

Lemma 4. For quadratic preferences: (i) ∂H(x,j)
∂x

≤ 0 for all x ∈ [x, d] iff j ≥ d and

(ii) ∂H(x,j)
∂x

≥ 0 for all x ∈ [d, x] iff j ≤ d.
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Proof. Differentiating H (x, j) we obtain

∂H (x, j)

∂x
= f ′

(
Q̄ (x)

)
[Dd (x)−Dj (x)] Q̄′0 (x)

{
1−

f ′′
(
Q̄ (x)

)
B2

[Dd (x) +Dj (x)]

}
+f
(
Q̄ (x)

) [
D′d (x)−D′j (x)

]
−

[
f ′
(
Q̄ (x)

)
B

]2 [
Dd (x)D′d (x)−Dj (x)D′j (x)

]
.

As f ′
(
Q̄
)
Q̄ = f ′

(
Q̄
) (
A∗/B̄

)
=
(
f ′
(
Q̄
)
/B̄
)2
DN (x) and

Q̄′ (x) =
Q̄ (x)

1− f ′′
(
Q̄ (x)

) (
1/B̄2

)
DN (x)

D′N (x)

DN (x)
,

the previous expression can be written as

∂H (x, j)

∂x
= f ′

(
Q̄ (x)

)
Q̄ (x) [Dd (x)−Dj (x)]W (x)

D′N (x)

DN (x)

+f
(
Q̄ (x)

) [
D′d (x)−D′j (x)

]
−
f ′
(
Q̄ (x)

)
Q̄ (x)

DN (x)

[
Dd (x)D′d (x)−Dj (x)D′j (x)

]
, (B.1)

where

W (x) =
1− f ′′(Q̄(x))

B̄2 [Dd (x) +Dj (x)]

1− f ′′(Q̄(x))
B̄2 DN (x)

∈ (0, 1) .

Note also that f
(
Q̄
)
≥ f ′

(
Q̄
)
Q̄.

Case 1: x ∈ [x, d] and j > d. As Dd (x) > Dj (x) > 0, 0 < D′d (x) < D′j (x) and
D′N (x) < 0, we obtain

∂H (x, j)

∂x
< f ′

(
Q̄ (x)

)
Q̄ (x)

{
[Dd (x)−Dj (x)]W

D′N (x)

DN (x)
+
[
D′d (x)−D′j (x)

]
−
Dd (x)D′d (x)−Dj (x)D′j (x)

DN (x)

}
<

f ′
(
Q̄ (x)

)
Q̄ (x)

DN (x)

{
DN (x)

[
D′d (x)−D′j (x)

]
−
[
Dd (x)D′d (x)−Dj (x)D′j (x)

]}
<

f ′
(
Q̄ (x)

)
Q̄ (x)

DN (x)

{
[Dd (x) +Dj (x)]

[
D′d (x)−D′j (x)

]
−
[
Dd (x)D′d (x)−Dj (x)D′j (x)

]}
=

f ′
(
Q̄ (x)

)
Q̄ (x)

DN (x)

{
Dj (x)D′d (x)−Dd (x)D′j (x)

}
< 0.
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Case 2: x ∈ [x, d] and j < d. In these cases, Dd (x) < Dj (x), 0 < D′d (x), D′d (x)
> D′j (x) and D′N (x) < 0. Thus, proceeding as before, we obtain

∂H (x, j)

∂x
>
f ′
(
Q̄ (x)

)
Q̄ (x)

DN (x)

{
Dj (x)D′d (x)−Dd (x)D′j (x)

}
> 0.

Case 3: x ∈ [x, d] and j > d. Now, Dd (x) > Dj (x) > 0, D′d (x) < 0, D′d (x)
< D′j (x) and D′N (x) > 0. Using (B.1) and W < 1, we get

∂H (x, j)

∂x
<

f ′
(
Q̄ (x)

)
Q̄ (x)

DN (x)

{
[Dd (x)−Dj (x)]D′N (x) +DN (x)

[
D′d (x)−D′j (x)

]
−
[
Dd (x)D′d (x)−Dj (x)D′j (x)

]}
.

When preferences are quadratic, Dj (x) = (1− x) (1 + x− 2j) andD′j (x) = −2 (x− j)
for all j ∈ N . Thus,

Dd (x)−Dj (x) = 2 (1− x) (j − d)

and
D′d (x)−D′j (x) = −2 (j − d) .

Also, DN (x) = n (1− x) (1 + x− 2x) and D′N (x) = −2n (x− x) > 0. Substituting
the values for quadratic preferences, we obtain

∂H (x, j)

∂x
<
f ′
(
Q̄ (x)

)
Q̄ (x)

DN (x)
{−2 (1− x) (j − d) (2d− 3x− 1− 4nx+ 3nx+ n+ 2j)} .

Since x ≤ 1
n

(
n+1

2
d+ j + n−3

2
1
2

)
, x ∈ [d, x] and j > d, it can be concluded that

∂H(x,j)
∂x

< 0.

Case 4: Proceeding as in Case 3, if j < d then Dd (x)−Dj (x) < 0 and D′d (x)−
D′j (x) > 0. Thus,

∂H (x, j)

∂x
>
f ′
(
Q̄ (x)

)
Q̄ (x)

DN (x)
{−2 (1− x) (j − d) (2d− 3x− 1− 4nx+ 3nx+ n+ 2j)} .

Since (2d− 3x− 1− 4nx+ 3nx+ n+ 2j) > 0 and (j − d) < 0 then ∂H(x,j)
∂x

>
0.

To complete the proof, we next show that the optimal target-policy of the median
player beats any other alternative. We consider the case where x < d; a similar
argument will prove the statement for cases where x > d.

By Lemma 3, any x ∈ (0, x)∪ (d, 1) is majority blocked, either by x or by d. By
Lemma 4, for any x, y ∈ [x, d], we have that
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1. If Vd (x) ≥ Vd (y) for some x > y =⇒ Vj (x) > Vj (y) for all j > d

2. If Vd (x) ≥ Vd (y) for some x < y =⇒ Vj (x) > Vj (y) for all j < d.

Thus, no other y 6= x∗d such that y ∈ [x, d], gets the support of a majority, as
preferences satisfy single-crossing on the interval [x, d]. The only Condorcet-winner
candidate is x∗d, as (i) it is majority preferred to any y ∈ [x, d] and (ii) either x or d
majority block any other y ∈ (0, x)∪ (d, 1).

Proof of Proposition 4. We start by proving a preliminary result.

Lemma 5. For any three agents i, j, k ∈ N such that i < j < k and two policies
x, y ∈ X, if Vj (x) > Vj (y), Vi (x) < Vi (y) and Vk (x) < Vk (y) then y > x.

Proof. The three inequalities can be written as

f (Q (x))Dj (x)− 1

2
a2
j (x) > f (Q (y))Dj (y)− 1

2
a2
j (y) ,

f (Q (x))Dk (x)− 1

2
a2
k (x) < f (Q (y))Dk (y)− 1

2
a2
k (y) ,

f (Q (x))Di (x)− 1

2
a2
i (x) < f (Q (y))Di (y)− 1

2
a2
i (y) .

Since a2
l (x) =

[
f ′(Q(x))
B(x)

]2

D2
l (x) for any l ∈ N we have that

[Dj (x)−Di (x)]

{
f (Q (x))− 1

2

[
f ′ (Q (x))

B (x)

]2

[Dj (x) +Di (x)]

}

> [Dj (y)−Di (y)]

{
f (Q (y))− 1

2

[
f ′ (Q (y))

B (y)

]2

[Dj (y) +Di (y)]

}
.

Given that Dl (x)−Dt (x) = 2 (1− x) (t− l) for any l, t ∈ N we get

(1− x)

{
f (Q (x))− 1

2

[
f ′ (Q (x))

B (x)

]2

[Dj (x) +Dk (x)]

}

> (1− y)

{
f (Q (y))− 1

2

[
f ′ (Q (y))

B (y)

]2

[Dj (y) +Dk (y)]

}

and

(1− x)

{
f (Q (x))− 1

2

[
f ′ (Q (x))

B (x)

]2

[Dj (x) +Di (x)]

}

< (1− y)

{
f (Q (y))− 1

2

[
f ′ (Q (y))

B (y)

]2

[Dj (y) +Di (y)]

}
.
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Hence subtracting the previous inequalities,

(1− x)

[
f ′ (Q (x))

B (x)

]2

{Di (x)−Dk (x)} > (1− y)

[
f ′ (Q (y))

B (y)

]2

{Di (y)−Dk (y)} .

Substituting B2 (x) = f ′ (Q (x))Q (x)DM (x) and DM (x) = m (1− x)2 we get[
f ′ (Q (x))

Q (x) (1− x)

]
{Di (x)−Dk (x)} >

[
f ′ (Q (y))

Q (y) (1− y)

]
{Di (y)−Dk (y)} .

Replacing Di (x)−Dk (x) = 2 (1− x) (k − i), we have that

f ′ (Q (x))

Q (x)
>
f ′ (Q (y))

Q (y)
,

implying Q (x) < Q (y)⇐⇒ x < y.

The previous result implies that if agents i and j, such that i < d < j, prefer a
policy x to x∗d then x ≥ x∗d. Then, if a Condorcet-winner policy exists, it can not be
more polarized than x∗d.

Appendix C. Intermediate results in Section 4.1

In the NSO case (where B (x) = B̄), implicit differentiation of (10) yields

Q̄′ (x) =
A′ (x)

B̄
= −

f ′
(
A/B̄

)
D′0 (x)

f ′′
(
A/B̄

)
D0 (x)

< 0 for all x > 0.

Hence, the optimal target-policy of any representative r ∈ N , r 6= 0, solves

0 = f ′ (Q (x))Q′ (x)Dr (x) + f (Q (x))D′r (x)

= Dr (x)

[
f (Q (x))

D′r (x)

Dr (x)
−
(
f ′
(
A/B̄

))2

f ′′
(
A/B̄

) D′0 (x)

D0 (x)

]
,

implying D′0 (x) ·D′r (x) < 0. That is, x∗r ∈ (0, r) for all r 6= 0. Regarding agent 0,
her optimal target-policy is x∗0 = 0 as V ′0 (x) < 0 for all x > 0.

Lemma 6. If x < z and i < j then

Di (z)

Di (x)
<
Dj (z)

Dj (x)
. (C.1)
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Proof. To prove the statement we consider six possible cases depending on the rel-
ative position of x, z, i, j. In each case, we prove that: if x < z and i < j then
Dj (z)−Dj (x) > Di (z)−Di (x). Therefore, as Dj (x) < Di (x), it follows that

Dj (z)−Dj (x)

Dj (x)
>
Di (z)−Di (x)

Di (x)
,

which implies (C.1).

Note that Dk (z)−Dk (x) = θ (|k − x|)− θ (|k − z|), where θ is strictly convex.

Case 1. x < z ≤ i < j. In this case, we have that

θ (|j − x|)− θ (|j − z|) > θ (|i− x|)− θ (|i− z|) .

So, the statement follows.

Case 2. i < j ≤ x < z. Proceeding as in the previous case, we obtain

θ (|z − i|)− θ (|x− i|) > θ (|z − j|)− θ (|x− j|) .

Case 3. x ≤ i < j ≤ z. In these cases

θ (|j − x|) > θ (|j − i|) + θ (|i− x|) and

θ (|z − i|) > θ (|j − i|) + θ (|z − j|) .

Hence, θ (|j − x|)− θ (|j − z|) > θ (|i− x|) + θ (|z − i|) .
Case 4. x ≤ i ≤ z ≤ j. The statement follows directly, as the convexity of θ

implies

θ (|j − x|) > θ (|j − z|)+θ (|z − i|)+θ (|i− x|) > θ (|j − z|)+θ (|i− x|)−θ (|z − i|) .

Case 5. i ≤ x ≤ j < z. Now, as before we obtain

θ (|z − i|) > θ (|x− i|)+θ (|j − x|)+θ (|z − j|) > θ (|x− i|)−θ (|j − x|)+θ (|z − j|) .

Case 6. i ≤ x ≤ z ≤ j. In these cases,

θ (j − x)− θ (j − z) > 0 > θ (x− i)− θ (z − i) .

Lemma 7. For z > x,

Vd (z) ≥ Vd (x) =⇒ Vl (z) > Vl (x) for all l > d 6= 0.
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Proof. Let us assume that Vd (z)−Vd (x) ≥ 0, i.e. f (Q (z))Dd (z)−f (Q (x))Dd (x) ≥
0. Then, from Lemma 6, it can be said that for all l > d

f (Q (x))

f (Q (z))
≤ Dd (z)

Dd (x)
<
Dl (z)

Dl (x)
.

Hence,
Vl (x) = f (Q (x))Dl (x) < f (Q (z))Dl (z) = Vl (z) .

Appendix D. Proof of results in Section 4.2

Proof of Proposition 5. Since D′N = 2n(x− x) and D′M = 2m(x− 1),

P ′ = 2s2 (nx− x(n+m) +m) .

So, P ′ > 0⇔ x < x̂ and P ′ < 0⇔ x > x̂.

Notice that V ′j (x) = P ′Dj+D
′
j (P − s2Dj). Under quadratic preferences Dj(x) =

(1− x)(1 + x− 2j) and D′j(x) = 2(j − x), so V ′j (j) = P ′Dj(j). Since Dj(j) > 0 for
any j < 1/2 and x < 1, the statement of the proposition follows.

Proof of Lemma 2. The indirect utility function of any agent j ∈ N is

Vj (x) = (1− x) (1 + x− 2j)G ≥ 0,

where

G =
1

2

[
1− s2 (1− x) (1 + x− 2j)

]
+ s2 (1− x) (n (1 + x− 2x)−m (1− x)) .

Since j ≤ 1/2 and x ∈ [0, 1], G ≥ 0 and Vj ≥ 0. Thus,

V ′j (x) = 2 (j − x)G+ (1− x) (1 + x− 2j)
∂G

∂x
.

Note that, as j ≤ 1/2, at any interior optimum (j − x) ∂G
∂x
≤ 0, where

∂G

∂x
= −s2 (j − 2m− x− 2xn+ 2mx+ 2nx) .

The second partial derivative is

V ′′j (x) = −2G+ 4 (j − x)
∂G

∂x
+ (1− x) (1 + x− 2j)

∂2G

∂x2

= −2G+ 4 (j − x)
∂G

∂x
− s2 (2m+ 2n− 1) (1− x) (1 + x− 2j) ,

which is negative when x ∈ [0, 1].
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Proof of Proposition 6. Lemma 2 guarantees the existence of a Condorcet winner
policy x∗w. We start by proving an intermediate result.

Lemma 8. For any x ∈ [0, 1] and any two agents i, k ∈ N such that i < k, V ′i (x) < 0
and V ′k(x) < 0 imply V ′j (x) < 0 for any j ∈ (i, k).

Proof. Considering quadratic preferences, for any l ∈ N , V ′l can be written as

V ′l (x) = Φl2 + Ψl + Ω,

where Φ,Ψ and Ω are expressions that depend on s, x, x,m and n. Let j = αi +
(1− α) k and assume αV ′i (x) < 0 and (1− α)V ′k (x) < 0.

Hence,

αΦi2 + αΨi+ αΩ + (1− α) Φk2 + (1− α) Ψk + (1− α) Ω

= αΦi2 + (1− α) Φk2 + Ψj + Ω < 0. (D.1)

On the other hand,

V ′j (x) = Φ (αi+ (1− α) k)2 + Ψj + Ω.

Using (D.1), we obtain

V ′j (x) < Φ (αi+ (1− α) k)2 − αΦi2 − (1− α) Φk2 = −Φα (1− α) (k − i)2 < 0.

This implies that x∗w ≥ x∗d. Therefore, by Proposition 5 we can conclude that if
d < x̂ then x∗w ≥ d. Now, it remains to be shown that if d > x̂ then x∗w ≤ d. By
contradiction let us assume that x∗w > d. By Lemma 8 this can only happen when

V ′0(d) = P ′D0 +D′0
(
P − s2D0

)
> 0,

where 0 denotes the agent whose peak is at zero. Given thatD′0(d) < 0 and P ′(d) < 0
(since P is maximized at x̂ and d > x̂), necessarily P (d) − s2D0(d) < 0. Under
quadratic preferences this can be written as

1

2
+ s2(1− d)(n(1 + d− 2x)− (1 + d)−m(1− d)) < 0

implying
1

2
+ s2(n(1 + d− 2x)− (1 + d)−m(1− d)) < 0.

Additionally, the existence of an interior equilibrium for any x and in particular for
x = 0 requires that

P (0) =
1

2
+ s2(n(1− 2x)−m) ≥ 0.

The last two inequalities can both hold only when d ≤ 1/(n+m+ 1). Since d > x̂
and x̂ > 1/(n+m+ 1) we have the contradiction that concludes the proof.
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Appendix E. Results in the model with the linear-difference CSF and a
NSO.

In the NSO case (where B (x) = B̄), the following is obtained:

Proposition 7. (NSO case) Under the linear-difference CSF, either (x∗r − r) (x∗r − x) <
0 or x∗r = x = r, for any r ∈ N .

Proof of Proposition 7. Differentiating the indirect utility function of agent j yields

V ′j (x) = P ′ (x)Dj (x) +
(
P (x)− s2Dj (x)

)
D′j (x) .

Additionally, the existence of an interior equilibrium for any x and in particular for
x = 1 (the case that implies a lower P ) requires that P (1) = 1

2
− sB̄ ≥ 0. Given

that D−j (x) =
∑

i∈N,i 6=j Di (x) ≥ 0, this implies that

P − s2Dj =
1

2
+ s

(
sDN − B̄

)
− s2Dj =

1

2
+ s

(
sD−j − B̄

)
≥ 0.

Consequently, V ′j (x) = 0 implies that P ′D′j < 0 in equilibrium, where P ′ = s2D′N .
Since Dj and DN are uniquely maximal at j and x, respectively, the statement of
the proposition follows.25

As in the case of a CSF homogeneous of degree zero (see Proposition 1), this
result comes from the interaction of intra-group forces that lead the representative
to face the trade-off between the winning-probability maximizing policy (x) and the
winning-utility maximizing policy (r). Consequently, the optimal target-policy of
the representative agent r ∈ N can imply either a moderation or a polarization with
respect to her peak depending on whether r < x or r > x, respectively.

If the policy is collectively selected, the following result guarantees the existence
of a Condorcet winner policy.

Lemma 9. (NSO case) Under quadratic preferences and the linear-difference CSF,
the indirect utility is single-peaked.

Proof of Lemma 9. The indirect utility function can be written as, Vj(x) = DjG +

uj (1), where G = P − s2

2
Dj ≥ 0 and Dj ≥ 0. Thus,

V ′j (x) = D′jG+Dj
∂G

∂x
.

At any interior optimum we must have,

D′j
∂G

∂x
≤ 0,

25Notice that the proof is valid not only for quadratic preferences.
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where D′j
∂G
∂x

= 2s2(j− x)(D′N − 1
2
D′j) = 2s2(j− x)(2n(x− x)− (j− x)). The second

partial derivative is,

V ′′j (x) = D′′jG+ 2D′j
∂G

∂x
+
∂2G

∂x2
,

where ∂2G
∂x2 = −s2(2n − 1) ≤ 0, as D′′j = −2 < 0, and we know that at any interior

optimum D′j
∂G
∂x
≤ 0, then the interior optimum is actually a maximum.

The following result shows the relative location of this Condorcet-winner policy
x∗w.

Proposition 8. (NSO case) Under quadratic preferences and the linear-difference
CSF, if d 6= x then (x∗w − d) (x∗w − x) < 0. Otherwise, x∗w = d = x.

Proof of Proposition 8. Lemma 9 guarantees the existence of a Condorcet winner
policy. Let us consider that d < x. By Proposition 7, x∗j > x for any j > x and
x∗j > d for any j ∈ (d, x). Therefore, x∗w cannot be lower than or equal to d. A
symmetric argument proves that x∗w < d when d > x.

Consequently, unlike the case with a CSF homogeneous of degree zero, we cannot
say in this case that the optimal target-policy of the median player will be the
Condorcet winner. But the conclusion does not change qualitatively: the Condorcet
winner optimal policy will be more moderated (or polarized) than the median’s peak
when this peak is lower (or higher) than x.
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